面试中,redis也是很受面试官亲睐的一部分。我向在这里讲的是redis的底层数据结构,而不是你理解的五大数据结构。你有没有想过redis底层是怎样的数据结构呢,他们和我们java中的HashMap、List、等使用的数据结构有什么区别呢。
我们都知道redis是用C语言写,但是C语言处理字符串和数组的成本是很高的,下面我分别说几个例子。
没有数据结构支撑的几个问题
及其容易造成缓冲区溢出问题,比如用strcat(),在用这个函数之前必须要先给目标变量分配足够的空间,否则就会溢出。
如果要获取字符串的长度,没有数据结构的支撑,可能就需要遍历,它的复杂度是O(N)
内存重分配。C字符串的每次变更(曾长或缩短)都会对数组作内存重分配。同样,如果是缩短,没有处理好多余的空间,也会造成内存泄漏。
好了,Redis自己构建了一种名叫Simple dynamic string(SDS)的数据结构,他分别对这几个问题作了处理。我们先来看看它的结构源码:
struct sdshdr{
//记录buf数组中已使用字节的数量
//等于 SDS 保存字符串的长度
int len;
//记录 buf 数组中未使用字节的数量
int free;
//字节数组,用于保存字符串
char buf[];
}
再来说说它的优点:
开发者不用担心字符串变更造成的内存溢出问题。
常数时间复杂度获取字符串长度len字段。
空间预分配free字段,会默认留够一定的空间防止多次重分配内存。
更多了解:https://redis.io/topics/internals-sds
这就是string的底层实现,更是redis对所有字符串数据的处理方式(SDS会被嵌套到别的数据结构里使用)。
Redis的链表在双向链表上扩展了头、尾节点、元素数等属性。
2.1 源码
ListNode节点数据结构:
typedef struct listNode{
//前置节点
struct listNode *prev;
//后置节点
struct listNode *next;
//节点的值
void *value;
}
链表数据结构:
typedef struct list{
//表头节点
listNode *head;
//表尾节点
listNode *tail;
//链表所包含的节点数量
unsigned long len;
//节点值复制函数
void (*free) (void *ptr);
//节点值释放函数
void (*free) (void *ptr);
//节点值对比函数
int (*match) (void *ptr,void *key);
}
从上面可以看到,Redis的链表有这几个特点:
可以直接获得头、尾节点。
常数时间复杂度得到链表长度。
是双向链表。
Redis的Hash,就是在数组+链表的基础上,进行了一些rehash优化等。
3.1 数据结构源码
哈希表:
typedef struct dictht {
// 哈希表数组
dictEntry **table;
// 哈希表大小
unsigned long size;
// 哈希表大小掩码,用于计算索引值
// 总是等于 size - 1
unsigned long sizemask;
// 该哈希表已有节点的数量
unsigned long used;
}
Hash表节点:
typedef struct dictEntry {
// 键
void *key;
// 值
union {
void *val;
uint64_t u64;
int64_t s64;
} v;
// 指向下个哈希表节点,形成链表
struct dictEntry *next; // 单链表结构
}
字典:
typedef struct dict {
// 类型特定函数
dictType *type;
// 私有数据
void *privdata;
// 哈希表
dictht ht[2];
// rehash 索引
// 当 rehash 不在进行时,值为 -1
int rehashidx; /* rehashing not in progress if rehashidx == -1 */
}
可以看出:
Reids的Hash采用链地址法来处理冲突,然后它没有使用红黑树优化。
哈希表节点采用单链表结构。
rehash优化。
下面我们讲一下它的rehash优化。
3.2 rehash
当哈希表的键对泰国或者太少,就需要对哈希表的大小进行调整,redis是如何调整的呢?
我们仔细可以看到dict结构里有个字段dictht ht[2]代表有两个dictht数组。第一步就是为ht[1]哈希表分配空间,大小取决于ht[0]当前使用的情况。
将保存在ht[0]中的数据rehash(重新计算哈希值)到ht[1]上。
当ht[0]中所有键值对都迁移到ht[1]后,释放ht[0],将ht[1]设置为ht[0],并ht[1]初始化,为下一次rehash做准备。
3.3 渐进式rehash
我们在3.2中看到,redis处理rehash的流程,但是更细一点的讲,它如何进行数据迁的呢?
这就涉及到了渐进式rehash,redis考虑到大量数据迁移带来的cpu繁忙(可能导致一段时间内停止服务),所以采用了渐进式rehash的方案。步骤如下:
为ht[1]分配空间,同时持有两个哈希表(一个空表、一个有数据)。
维持一个技术器rehashidx,初始值0。
每次对字典增删改查,会顺带将ht[0]中的数据迁移到ht[1],rehashidx++(注意:ht[0]中的数据是只减不增的)。
直到rehash操作完成,rehashidx值设为-1。
它的好处:采用分而治之的思想,将庞大的迁移工作量划分到每一次CURD中,避免了服务繁忙。
这个数据结构是我面试中见过最多的,它其实特别简单。学过的人可能都知道,它和平衡树性能很相似,但为什么不用平衡树而用skipList呢?
4.1 skipList & AVL 之间的选择
从算法实现难度上来比较,skiplist比平衡树要简单得多。
平衡树的插入和删除操作可能引发子树的调整,逻辑复杂,而skiplist的插入和删除只需要修改相邻节点的指针,操作简单又快速。
查找单个key,skiplist和平衡树的时间复杂度都为O(log n),大体相当。
在做范围查找的时候,平衡树比skiplist操作要复杂。
skiplist和各种平衡树(如AVL、红黑树等)的元素是有序排列的。
可以看到,skipList中的元素是有序的,所以跳跃表在redis中用在有序集合键、集群节点内部数据结构
4.2 源码
跳跃表节点:
typedef struct zskiplistNode {
// 后退指针
struct zskiplistNode *backward;
// 分值
double score;
// 成员对象
robj *obj;
// 层
struct zskiplistLevel {
// 前进指针
struct zskiplistNode *forward;
// 跨度
unsigned int span;
} level[];
} zskiplistNode;
跳跃表:
typedef struct zskiplist {
// 表头节点和表尾节点
struct zskiplistNode *header, *tail;
// 表中节点的数量
unsigned long length;
// 表中层数最大的节点的层数
int level;
}
它有几个概念:
4.2.1 层(level[])
层,也就是level[]字段,层的数量越多,访问节点速度越快。(因为它相当于是索引,层数越多,它索引就越细,就能很快找到索引值)
4.2.2 前进指针(forward)
层中有一个forward字段,用于从表头向表尾方向访问。
4.2.3 跨度(span)
用于记录两个节点之间的距离
4.2.4 后退指针(backward)
用于从表尾向表头方向访问。
案例
level0 1---------->5
level1 1---->3---->5
level2 1->2->3->4->5->6->7->8
比如我要找键为6的元素,在level0中直接定位到5,然后再往后走一个元素就找到了。
Reids对整数存储专门作了优化,intset就是redis用于保存整数值的集合数据结构。当一个结合中只包含整数元素,redis就会用这个来存储。
127.0.0.1:6379[2]> sadd number 1 2 3 4 5 6
(integer) 6
127.0.0.1:6379[2]> object encoding number
“intset”
源码
intset数据结构:
typedef struct intset {
// 编码方式
uint32_t encoding;
// 集合包含的元素数量
uint32_t length;
// 保存元素的数组
int8_t contents[];
}
你肯定很好奇编码方式(encoding)字段是干嘛用的呢?
如果 encoding 属性的值为 INTSET_ENC_INT16 , 那么 contents 就是一个 int16_t 类型的数组, 数组里的每个项都是一个 int16_t 类型的整数值 (最小值为 -32,768 ,最大值为 32,767 )。
如果 encoding 属性的值为 INTSET_ENC_INT32 , 那么 contents 就是一个 int32_t 类型的数组, 数组里的每个项都是一个 int32_t 类型的整数值 (最小值为 -2,147,483,648 ,最大值为 2,147,483,647 )。
如果 encoding 属性的值为 INTSET_ENC_INT64 , 那么 contents 就是一个 int64_t 类型的数组, 数组里的每个项都是一个 int64_t 类型的整数值 (最小值为 -9,223,372,036,854,775,808 ,最大值为 9,223,372,036,854,775,807 )。
说白了就是根据contents字段来判断用哪个int类型更好,也就是对int存储作了优化。
说到优化,那redis如何作的呢?就涉及到了升级。
5.1 encoding升级
如果我们有个Int16类型的整数集合,现在要将65535(int32)加进这个集合,int16是存储不下的,所以就要对整数集合进行升级。
它是怎么升级的呢(过程)?
假如现在有2个int16的元素:1和2,新加入1个int32位的元素65535。
内存重分配,新加入后应该是3个元素,所以分配3*32-1=95位。
选择最大的数65535, 放到(95-32+1, 95)位这个内存段中,然后2放到(95-32-32+1+1, 95-32)位…依次类推。
升级的好处是什么呢?
提高了整数集合的灵活性。
尽可能节约内存(能用小的就不用大的)。
5.2 不支持降级
按照上面的例子,如果我把65535又删掉,encoding会不会又回到Int16呢,答案是不会的。官方没有给出理由,我觉得应该是降低性能消耗吧,毕竟调整一次是O(N)的时间复杂度。
ziplist是redis为了节约内存而开发的顺序型数据结构。它被用在列表键和哈希键中。一般用于小数据存储。
引用https://segmentfault.com/a/1190000016901154中的两个图:
6.1 源码
ziplist没有明确定义结构体,这里只作大概的演示。
typedef struct entry {
/*前一个元素长度需要空间和前一个元素长度*/
unsigned int prevlengh;
/*元素内容编码*/
unsigned char encoding;
/*元素实际内容*/
unsigned char *data;
}zlentry;
复制代码
复制代码
typedef struct ziplist{
/*ziplist分配的内存大小*/
uint32_t zlbytes;
/*达到尾部的偏移量*/
uint32_t zltail;
/*存储元素实体个数*/
uint16_t zllen;
/*存储内容实体元素*/
unsigned char* entry[];
/*尾部标识*/
unsigned char zlend;
}
第一次看可能会特别蒙蔽,你细细的把我这段话看完就一定能懂。
Entry的分析
entry结构体里面有三个重要的字段:
previous_entry_length: 这个字段记录了ziplist中前一个节点的长度,什么意思?就是说通过该属性可以进行指针运算达到表尾向表头遍历,这个字段还有一个大问题下面会讲。
encoding:记录了数据类型(int16? string?)和长度。
data/content: 记录数据。
连锁更新
previous_entry_length字段的分析
上面有说到,previous_entry_length这个字段存放上个节点的长度,那默认长度给分配多少呢?redis是这样分的,如果前节点长度小于254,就分配1字节,大于的话分配5字节,那问题就来了。
如果前一个节点的长度刚开始小于254字节,后来大于254,那不就存放不下了吗? 这就涉及到previous_entry_length的更新,但是改一个肯定不行阿,后面的节点内存信息都需要改。所以就需要重新分配内存,然后连锁更新包括该受影响节点后面的所有节点。
除了增加新节点会引发连锁更新、删除节点也会触发。
一个由ziplist组成的双向链表。但是一个quicklist可以有多个quicklist节点,它很像B树的存储方式。是在redis3.2版本中新加的数据结构,用在列表的底层实现。
结构体源码
表头结构:
typedef struct quicklist {
//指向头部(最左边)quicklist节点的指针
quicklistNode *head;
//指向尾部(最右边)quicklist节点的指针
quicklistNode *tail;
//ziplist中的entry节点计数器
unsigned long count; /* total count of all entries in all ziplists */
//quicklist的quicklistNode节点计数器
unsigned int len; /* number of quicklistNodes */
//保存ziplist的大小,配置文件设定,占16bits
int fill : 16; /* fill factor for individual nodes */
//保存压缩程度值,配置文件设定,占16bits,0表示不压缩
unsigned int compress : 16; /* depth of end nodes not to compress;0=off */
}
quicklist节点结构:
typedef struct quicklistNode {
struct quicklistNode *prev; //前驱节点指针
struct quicklistNode *next; //后继节点指针
//不设置压缩数据参数recompress时指向一个ziplist结构
//设置压缩数据参数recompress指向quicklistLZF结构
unsigned char *zl;
//压缩列表ziplist的总长度
unsigned int sz; /* ziplist size in bytes */
//ziplist中包的节点数,占16 bits长度
unsigned int count : 16; /* count of items in ziplist */
//表示是否采用了LZF压缩算法压缩quicklist节点,1表示压缩过,2表示没压缩,占2 bits长度
unsigned int encoding : 2; /* RAW==1 or LZF==2 */
//表示一个quicklistNode节点是否采用ziplist结构保存数据,2表示压缩了,1表示没压缩,默认是2,占2bits长度
unsigned int container : 2; /* NONE==1 or ZIPLIST==2 */
//标记quicklist节点的ziplist之前是否被解压缩过,占1bit长度
//如果recompress为1,则等待被再次压缩
unsigned int recompress : 1; /* was this node previous compressed? */
//测试时使用
unsigned int attempted_compress : 1; /* node can't compress; too small */
//额外扩展位,占10bits长度
unsigned int extra : 10; /* more bits to steal for future usage */
}
相关配置
在redis.conf中的ADVANCED CONFIG部分:
list-max-ziplist-size -2
list-compress-depth 0
list-max-ziplist-size参数
我们来详细解释一下list-max-ziplist-size这个参数的含义。它可以取正值,也可以取负值。
当取正值的时候,表示按照数据项个数来限定每个quicklist节点上的ziplist长度。比如,当这个参数配置成5的时候,表示每个quicklist节点的ziplist最多包含5个数据项。
当取负值的时候,表示按照占用字节数来限定每个quicklist节点上的ziplist长度。这时,它只能取-1到-5这五个值,每个值含义如下:
-5: 每个quicklist节点上的ziplist大小不能超过64 Kb。(注:1kb => 1024 bytes)
-4: 每个quicklist节点上的ziplist大小不能超过32 Kb。
-3: 每个quicklist节点上的ziplist大小不能超过16 Kb。
-2: 每个quicklist节点上的ziplist大小不能超过8 Kb。(-2是Redis给出的默认值)
list-compress-depth参数
这个参数表示一个quicklist两端不被压缩的节点个数。注:这里的节点个数是指quicklist双向链表的节点个数,而不是指ziplist里面的数据项个数。实际上,一个quicklist节点上的ziplist,如果被压缩,就是整体被压缩的。
参数list-compress-depth的取值含义如下:
0: 是个特殊值,表示都不压缩。这是Redis的默认值。 1: 表示quicklist两端各有1个节点不压缩,中间的节点压缩。 2: 表示quicklist两端各有2个节点不压缩,中间的节点压缩。 3: 表示quicklist两端各有3个节点不压缩,中间的节点压缩。 依此类推…
Redis对于quicklist内部节点的压缩算法,采用的LZF——一种无损压缩算法。