重构(名词):对软件内部结构的一种调整,目的是在不改变软件可观察行为的前提下,提高其可理解性,降低其修改成本。
重构(动词):使用一系列重构手法,在不改变软件可观察行为的前提下,调整其结构。
重构的关键在于运用大量微小且保持软件行为的步骤,一步步达成大规模的修改。每个单独的重构要么很小,要么由若干小步骤组合而成。
可观察行为:整体而言,经过重构之后的代码所做的事应该与重构之前大致一样。
重构与性能优化有很多相似之处:两者都需要修改代码,并且两者都不会改变程序的整体功能。两者的差别在于其目的:重构是为了让代码“更容易理解,更易于修改”。这可能使程序运行得更快,也可能使程序运行得更慢。在性能优化时,只关心让程序运行得更快,最终得到的代码有可能更难理解和维护。
这是一个比喻,使用重构技术开发软件时,我把自己的时间分配给两种截然不同的行为:添加新功能和重构。添加新功能时,我们不应该修改既有代码,只管添加新功能。重构时我们就不饿能添加功能,只管调整代码的结构。
实际开发过程中,我们可能需要经常变换帽子。如果把程序结构改一下,功能的添加会容易得多;新功能添加好了以后发现代码难以理解,则继续重构。
我们之所以重构,因为它能让我们更快——添加功能更快,修复bug更快。
没有重构,程序的内部设计(架构)会逐渐腐败变质。当人们只为短期目的而修改代码时,他们经常没有完全理解架构的整体设计,于是代码逐渐失去了自己的结构。程序员越来越难通过阅读源码来理解原来的设计。
经常性的重构有助于代码维持自己该有的形态。
写让计算机理解的代码很容易,只要能编译通过并运行;但写出让别人能理解的代码则需要下点功夫了。所以我们写代码要考虑以后那个修改的人,而且那个人很可能是哦我们自己。
开始进行重构前,代码可以正常运行,但结构不够理想。在重构上花一点点时间,就可以让代码更好地表达自己的意图。
对代码进行重构,就可以深入理解代码的所作所为,并立即把新的理解反映在代码当中。搞清楚程序结构的同时,也验证了所做的一些假设, 更容易将Bug找出来。重构能够帮助我们更有效地写出健壮的代码。
设计耐久性假说:通过投入精力改善内部设计,我们增加了软件的耐久性,从而可以更长时间地保持开发的快速。
行业的陈规认为:良好的设计必须在开始编程之前完成,因为一旦开始编写代码,设计就只会逐渐腐败。重构改变了这个图景。现在我们可以改善已有代码的设计,因此我们可以先做一个设计,然后不断改善它,哪怕程序本身的功能也在不断发生着变化。由于预先做出良好的设计非常困难,想要既体面又快速地开发功能,重构必不可少。
三次法则
重构的最佳时机就在添加新功能之前。例如有个函数提供了我们需要的大部分功能,只是有几个变量跟我们需要的冲突,通常我们的做法使把这个函数复制过来,修改几个值。这样做会导致重复代码(将来有可能需要修改两处)。使用函数参数化(310)进行重构后,只需要调用这个函数,传入需要的参数。
修复bug时的情况也是一样。在寻找问题根因时,可能会发现:如果把3段一模一样且都会导致错误的代码合并到一处,问题修复起来会容易得多。
重构带来的帮助不仅发生在将来——常常是立竿见影。先在一些小细节上使用重构来帮助理解,给一两个变量改名,让它们更清楚地表达意图,以方便理解,或是将一个长函数拆成几个小函数。当代码变得更清晰一些时就会看见之前看不见的设计问题。
帮助理解的重构还有一个变体:已经理解代码在做什么,但发现它做得不好,例如逻辑不必要地迂回复杂,或者两个函数几乎完全相同,可以用一个参数化的函数取而代之。有两种处理方式:如果垃圾很容易重构,马上重构它;如果重构需要花一些精力,记录下来,完成当下的任务再回来重构它。
一般项目计划上没有专门留给重构的时间,绝大多数重构都在做其他事的过程中自然发生。如果团队过去忽视了重构,那么常常会需要专门花一些时间来优化代码库,以便更容易添加新功能。
长久以来,人们认为编写软件是一个累加的过程:要添加新功能,我们就应该增加新代码。但优秀的程序员知道,添加新功能最快的方法往往是先修改现有的代码,使新功能容易被加入。所以,软件永远不应该被视为“完成”。每当需要新能力时,软件就应该做出相应的改变。越是在已有代码中,这样的改变就越显重要。
如果有一块凌乱的代码,但并不需要修改它,那么就不需要重构它。如果丑陋的代码能被隐藏在一个API之下,暂时容忍它继续保持丑陋。只有当需要理解其工作原理时,对其进行重构才有价值。
另一种情况是,如果重写比重构还容易,就别重构了。
很多人认为,花在重构的时间是在拖慢新功能的开发进度。“重构会拖慢进度”这种看法仍然很普遍,这可能是导致人们没有充分重构的最大阻力所在。
重构的唯一目的就是让我们开发更快,用更少的工作量创造更大的价值。
有一种情况确实需要权衡取舍:有时会看到一个(大规模的)重构很有必要进行,而马上要添加的功能非常小,这时可以先把新功能加上,然后再做这次大规模重构。
如果开发环境(开发工具)能很好的支持自动化重构,则可以信任这些重构;如果不能最好有完备的测试套件(测试环境、测试代码、单元测试等)。
遗留代码往往很复杂,可能也没有充足的测试,关键还是别人写的。如果不幸遇到,没有什么好办法:没测试就加测试、随时重构相关的代码(不建议尝试一鼓作气把复杂而混乱的遗留代码重构成漂亮的代码)。
YAGNI:“你不需要它(you are`t going to need it)”。YAGNI并不是“不做架构性思考”的意思,不过确实有人以这种欠考虑的方式做事。
重构对架构最大的影响在于,通过重构,我们能得到一个设计良好的代码库,使其能够优雅地应对不断变化的需求。“在编码之前先完成架构”这种做法最大的问题在于,它假设了软件的需求可以预先充分理解。但经验显示,这个假设很多时候甚至可以说大多数时候是不切实际的。只有真正使用了软件、看到了软件对工作的影响,人们才会想明白自己到底需要什么。
重构是否有效,与团队采用的其他软件开发实践紧密相关。
重构的第一块基石是自测试代码。
如果一支团队想要重构,那么每个团队成员都需要掌握重构技能,能在需要时开展重构,而不会干扰其他人的工作。
自测试代码、持续集成、重构三者之间有着很强的协同效应。
重构可能使软件运行更慢,但它也使软件的性能优化更容易。先写出可调优的软件,然后调优它以求获得足够的速度。
编写构造良好的程序,不对性能投以特别的关注,直至进入性能优化阶段——那通常是在开发后期。一旦进入该阶段,再遵循特定的流程来调优程序性能。
在性能优化阶段,首先应该用一个度量工具来监控程序的运行,让它告诉我程序中哪些地方大量消耗时间和空间。这样就可以找出性能热点所在的一小段代码。然后集中关注这些性能热点,并使用持续关注法中的优化手段来优化它们。