JAVA学习笔记之HashMap

目录

  1. 相关概念介绍
  2. 实现原理介绍
  3. 源码分析
  4. 总结
  5. 参考地址

相关概念介绍

  • 数组
    采用一段连续的存储单元来存储数据。
  • 线性链表
    具有链接存储结构的线性表,它用一组地址任意的存储单元存放线性表中的数据元素,逻辑上相邻的元素在物理上不要求也相邻,不能随机存取。一般用结点描述:结点(表示数据元素) =数据域(数据元素的映象) + 指针域(指示后继元素存储位置)
  • 红黑树
    红黑树(Red Black Tree) 是一种自平衡二叉查找树,在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。相关介绍参考红黑树原理和算法
  • 哈希表
    是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。
    给定表M,存在函数f(key),对任意给定的关键字值key,代入函数后若能得到包含该关键字的记录在表中的地址,则称表M为哈希(Hash)表,函数f(key)为哈希(Hash) 函数。
  • 哈希冲突
    如果两个不同的元素,通过哈希函数得出的实际存储地址,然后要进行插入的时候,发现已经被其他元素占用了,这就是所谓的哈希冲突,也叫哈希碰撞。

实现原理介绍

HashMap原理图

简单来说,HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的,如果定位到的数组位置不含链表(当前node的next指向null),那么对于查找,添加等操作很快,仅需一次寻址即可;如果定位到的数组包含链表,对于添加操作,其时间复杂度为O(n),首先遍历链表,存在即覆盖,否则新增;对于查找操作来讲,仍需遍历链表,然后通过key对象的equals方法逐一比对查找。所以,性能考虑,HashMap中的链表出现越少,性能才会越好。

源码分析

以下所有代码基于jdk1.8

  • 成员变量
    //默认初始化容器大小 16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    //默认容器最大值 2^30
    static final int MAXIMUM_CAPACITY = 1 << 30;
    //默认的负载因子,当容器元素数量达到总容量*DEFAULT_LOAD_FACTOR时会进行扩容操作
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //默认树形阈值
    static final int TREEIFY_THRESHOLD = 8;
    //默认非树形阈值
    static final int UNTREEIFY_THRESHOLD = 6;
    //默认红黑树最小容量
    static final int MIN_TREEIFY_CAPACITY = 64;
    //数组
    transient Node[] table;
    //使用Set存储所有的节点
    transient Set> entrySet;
    //map的大小
    transient int size;
    //hashMap修改的次数
    transient int modCount;
    //下一次扩容的阈值
    int threshold;
    //hash表的负载因子
    final float loadFactor;
  • 节点
static class Node implements Map.Entry {
        final int hash;
        final K key;
        V value;
        Node next;

        Node(int hash, K key, V value, Node next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry e = (Map.Entry)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }
  • #put()操作
public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    
static final int hash(Object key) {
    int h;
    //h>>>16 无符号右移16位,hash的效果等于将key的hashCode的高16位^低16位运算
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node[] tab; Node p; int n, i;
    //1.如果容器还未初始化,进行resize操作
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    //2.n是2的倍数所以(以n=16为例)n-1为1111,(n-1)&hash就是取hash的低四位,即保证坐标值一定是在数组范围之类
    //计算出该元素应该放入数组的下标,这里表示当该位置为null时,新增一个节点并放入
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
    //3.当不为空时,默认采用开放寻址法寻找到key相同(或者新增)的节点
        Node e; K k;
        //3.1 如果新增的key-value已经有对应的值了,不做操作,直接返回原值
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        //3.2 如果数组中的节点是树形节点,进行红黑树的插入操作
        else if (p instanceof TreeNode)
            e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
        else {
        //3.2 如果数组中的节点是线性链表,遍历节点,如果有相同的就break,否则将节点加入到末尾。
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    //如果链表长度超过了树形阈值,则将链表转换成红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        //4. 如果e不为空,说明找到相同key,替换新的value并返回旧的value
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            //自定义扩展方法,LinkedHashMap中有实现
            afterNodeAccess(e);
            return oldValue;
        }
    }
    //5. 修改次数自增,容器大小自增,并且如果超过了阈值,进行resize操作
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

主要流程如下:

  • 判断HashMap是否初始化,如果还没有初始化,先初始化;
  • 通过hash&(n-1)算出在桶上的位置,如果对应位置为空,直接放入该位置中;
  • 如果桶上的对应的位置不为空,则进入对应的链表进行下一步判断:
    • 根据hash或者key来判断是否相同,相同时e=p;
    • 如果p是红黑树,则进入红黑树的插入逻辑,并返回e;
    • 遍历p链表,根据hash或者key来判断是否存在相同,如果存在直接返回e,否则创建新的节点;
  • 根据上面返回的e节点来判断,如果不为空,说明在HashMap中找到对应的节点,替换新的value值并返回旧值,结束put操作;
  • 修改容器大小,并判断是否超过阈值,如果超过进行扩容操作。
  • #resize()操作
final Node[] resize() {
    //1. 数据备份,数组,容量大小,扩容阈值
    Node[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    //2. 如果超过默认最大值,直接返回,否则变更大小(原大小*2)
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    //3. 如果原扩容阈值>0,新的容量=原扩容阈值,否则使用默认值
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    //4. 根据负载因子计算新的扩容阈值
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    //5. 根据新的容量创建新的tab
    @SuppressWarnings({"rawtypes","unchecked"})
        Node[] newTab = (Node[])new Node[newCap];
    table = newTab;
    //6. 进行扩容操作
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                //5.1 对于单个节点,重新计算位置并放入
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                    //5.2 树形节点单独处理
                else if (e instanceof TreeNode)
                    ((TreeNode)e).split(this, newTab, j, oldCap);
                    //5.3 链表节点单独处理
                else { // preserve order
                    Node loHead = null, loTail = null;
                    Node hiHead = null, hiTail = null;
                    Node next;
                    do {
                        next = e.next;
                        //将链表的数据分成两波
                        //oldCap是旧桶的长度,是2的倍数,比如oldCap为16->10000
                        //e.hash&oldCap==0说明e.hash高位为0
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    //(e.hash & oldCap) == 0)的即hash值高位为0的还是原来的位置
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    //(e.hash & oldCap) != 0)的即hash值高位不为0的放入oldCap+j的位置
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

主要流程如下:

  • 先进行数组,容量大小,扩容阈值等的备份;

  • 扩容时如果是单节点,重新计算桶的位置,新的桶位置根据hash值来,可能还在原来的位置,也可能翻倍增长,如下图中15->31;

  • 如果是红黑树节点,单独处理;

  • 如果是链表结构,将链表分为两部分,一部分hash高位为0还保持原来的位置,另一部分放到数组原来位置+oldCap的位置上。如图所示:


    链表扩容示意图
  • 与1.7版本的比较
    1.7中没有红黑树,所以代码也比较简单一点

public V put(K key, V value) {
    //如果数组为空,扩容
    if (table == EMPTY_TABLE) {
        inflateTable(threshold);
    }
    if (key == null)
        return putForNullKey(value);
    int hash = hash(key);
    int i = indexFor(hash, table.length);
    //根据找出的索引位置去判断该位置上链表有没有相同的entry
    for (Entry e = table[i]; e != null; e = e.next) {
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }

    modCount++;
    //增加entry
    addEntry(hash, key, value, i);
    return null;
}

void addEntry(int hash, K key, V value, int bucketIndex) {
    //判断是否进行扩容操作
    if ((size >= threshold) && (null != table[bucketIndex])) {
        resize(2 * table.length);
        hash = (null != key) ? hash(key) : 0;
        bucketIndex = indexFor(hash, table.length);
    }
    //创建entry
    createEntry(hash, key, value, bucketIndex);
}

void createEntry(int hash, K key, V value, int bucketIndex) {
    Entry e = table[bucketIndex];
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    size++;
}

 void resize(int newCapacity) {
    Entry[] oldTable = table;
    int oldCapacity = oldTable.length;
    if (oldCapacity == MAXIMUM_CAPACITY) {
        threshold = Integer.MAX_VALUE;
        return;
    }

    Entry[] newTable = new Entry[newCapacity];
    //重点在这
    transfer(newTable, initHashSeedAsNeeded(newCapacity));
    table = newTable;
    threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}

 void transfer(Entry[] newTable, boolean rehash) {
    int newCapacity = newTable.length;
    for (Entry e : table) {
        while(null != e) {
            Entry next = e.next;
            if (rehash) {
                e.hash = null == e.key ? 0 : hash(e.key);
            }
            int i = indexFor(e.hash, newCapacity);
            //多线程下会形成闭环
            e.next = newTable[i];
            newTable[i] = e;
            e = next;
        }
    }
}

这里的扩容多线程情况下会出现闭环现象,下面通过几张图来解释闭环的形成:
我们假设 HashMap 从 2 resize到 4 :


初始图

假设我们有两个线程t1,t2,假设t1Entry next = e.next;处挂起,t2完成了后面的操作,在按照上面的代码执行后:


t1停止调度

这个时候t1又恢复了调度,接着往下执行:
t1恢复调度

接着往下执行:
t1执行1

t1执行2

闭环形成:


闭环形成
  • #get()操作
public V get(Object key) {
    Node e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node getNode(int hash, Object key) {
    Node[] tab; Node first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        //优先检查第一个节点
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
            //如果是红黑树,进行红黑树操作
            if (first instanceof TreeNode)
                return ((TreeNode)first).getTreeNode(hash, key);
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}
  • #remove()操作
public V remove(Object key) {
    Node e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}

final Node removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node[] tab; Node p; int n, index;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node node = null, e; K k; V v;
        //找出需要remove的节点,跟get操作基本一致
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {
            if (p instanceof TreeNode)
                node = ((TreeNode)p).getTreeNode(hash, key);
            else {
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        //remove对应的节点
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            //红黑树对应操作
            if (node instanceof TreeNode)
                ((TreeNode)node).removeTreeNode(this, tab, movable);
            //链表的对应操作
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}
  • 红黑树的实现
static final class TreeNode extends LinkedHashMap.Entry {
    TreeNode parent;  // red-black tree links
    TreeNode left;
    TreeNode right;
    TreeNode prev;    // needed to unlink next upon deletion
    boolean red;
    TreeNode(int hash, K key, V val, Node next) {
        super(hash, key, val, next);
    }
    //返回根节点
    final TreeNode root() {
        for (TreeNode r = this, p;;) {
            if ((p = r.parent) == null)
                return r;
            r = p;
        }
    }

    /**
     * 由于TreeNode即是树结构也是双向链表.所以这里
     * 保证树的根节点同时也是链表的首节点
     */
    static  void moveRootToFront(Node[] tab, TreeNode root) {
        int n;
        if (root != null && tab != null && (n = tab.length) > 0) {
            int index = (n - 1) & root.hash;
            TreeNode first = (TreeNode)tab[index];
            if (root != first) {
                Node rn;
                tab[index] = root;
                TreeNode rp = root.prev;
                if ((rn = root.next) != null)
                    ((TreeNode)rn).prev = rp;
                if (rp != null)
                    rp.next = rn;
                if (first != null)
                    first.prev = root;
                root.next = first;
                root.prev = null;
            }
            assert checkInvariants(root);
        }
    }
    //寻找节点
    final TreeNode find(int h, Object k, Class kc) {
        TreeNode p = this;
        do {
            int ph, dir; K pk;
            TreeNode pl = p.left, pr = p.right, q;
            //如果当前节点的hash大于需要寻找节点的hash,则指向其左孩子,否则指向右孩子,如果当前节点就是要寻找的节点,直接返回
            if ((ph = p.hash) > h)
                p = pl;
            else if (ph < h)
                p = pr;
            else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                return p;
            else if (pl == null)
                p = pr;
            else if (pr == null)
                p = pl;
            else if ((kc != null ||
                      (kc = comparableClassFor(k)) != null) &&
                     (dir = compareComparables(kc, k, pk)) != 0)
                p = (dir < 0) ? pl : pr;
            else if ((q = pr.find(h, k, kc)) != null)
                return q;
            else
                p = pl;
        } while (p != null);
        return null;
    }
    //获取相应的节点
    final TreeNode getTreeNode(int h, Object k) {
        return ((parent != null) ? root() : this).find(h, k, null);
    }

    //插入操作
    final TreeNode putTreeVal(HashMap map, Node[] tab,int h, K k, V v) {
        Class kc = null;
        boolean searched = false;
        //获取父节点
        TreeNode root = (parent != null) ? root() : this;
        for (TreeNode p = root;;) {
            int dir, ph; K pk;
            if ((ph = p.hash) > h)
                dir = -1;
            else if (ph < h)
                dir = 1;
            else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                return p;
            else if ((kc == null &&
                      (kc = comparableClassFor(k)) == null) ||
                     (dir = compareComparables(kc, k, pk)) == 0) {
                if (!searched) {
                    TreeNode q, ch;
                    searched = true;
                    if (((ch = p.left) != null &&
                         (q = ch.find(h, k, kc)) != null) ||
                        ((ch = p.right) != null &&
                         (q = ch.find(h, k, kc)) != null))
                        return q;
                }
                dir = tieBreakOrder(k, pk);
            }

            TreeNode xp = p;
            //根据hash判断,并且遍历插入到叶子节点,再进行平衡调整
            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                Node xpn = xp.next;
                TreeNode x = map.newTreeNode(h, k, v, xpn);
                if (dir <= 0)
                    xp.left = x;
                else
                    xp.right = x;
                xp.next = x;
                x.parent = x.prev = xp;
                if (xpn != null)
                    ((TreeNode)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
            }
        }
    }

    //删除操作
    final void removeTreeNode(HashMap map, Node[] tab,
                              boolean movable) {
        int n;
        if (tab == null || (n = tab.length) == 0)
            return;
        int index = (n - 1) & hash;
        TreeNode first = (TreeNode)tab[index], root = first, rl;
        TreeNode succ = (TreeNode)next, pred = prev;
        //1.先删除链表的关系
        if (pred == null)
            tab[index] = first = succ;
        else
            pred.next = succ;
        if (succ != null)
            succ.prev = pred;
        if (first == null)
            return;
        //2.开始删除树形关系
        if (root.parent != null)
            root = root.root();
        //如果链表太小,从红黑树转化成普通链表
        if (root == null || root.right == null ||
            (rl = root.left) == null || rl.left == null) {
            tab[index] = first.untreeify(map);  // too small
            return;
        }
        //2.1 被删除节点左孩子与右孩子都不为空
        TreeNode p = this, pl = left, pr = right, replacement;
        if (pl != null && pr != null) {
            TreeNode s = pr, sl;
            //寻找删除节点的后继(中序遍历)由于第一步已经断开本删除节点与其后继的链接,所以这里使用中序遍历找出其后继
            while ((sl = s.left) != null) // find successor
                s = sl;
            //交换后继与被删除节点的颜色
            boolean c = s.red; s.red = p.red; p.red = c; // swap colors
            TreeNode sr = s.right;
            TreeNode pp = p.parent;
            //如果pr就是其后继,直接交换位置
            if (s == pr) { // p was s's direct parent
                p.parent = s;
                s.right = p;
            }
            else {
                TreeNode sp = s.parent;
                if ((p.parent = sp) != null) {
                    if (s == sp.left)
                        sp.left = p;
                    else
                        sp.right = p;
                }
                if ((s.right = pr) != null)
                    pr.parent = s;
            }
            p.left = null;
            if ((p.right = sr) != null)
                sr.parent = p;
            if ((s.left = pl) != null)
                pl.parent = s;
            if ((s.parent = pp) == null)
                root = s;
            else if (p == pp.left)
                pp.left = s;
            else
                pp.right = s;
            //此时,被删除的节点与其后继位置交换完成
            if (sr != null)
                replacement = sr;
            else
                replacement = p;
        }
        else if (pl != null)
            //2.2 左子树不为空
            replacement = pl;
        else if (pr != null)
            //2.3 右子树不为空
            replacement = pr;
        else
            //2.4 左右子树都为空
            replacement = p;
        //3. 左右子树不为空进行,使用非空子树代替p
        if (replacement != p) {
            TreeNode pp = replacement.parent = p.parent;
            if (pp == null)
                root = replacement;
            else if (p == pp.left)
                pp.left = replacement;
            else
                pp.right = replacement;
            p.left = p.right = p.parent = null;
        }
        //4. 当删除节点是黑色的时候进行平衡转化
        TreeNode r = p.red ? root : balanceDeletion(root, replacement);
        //5. 点左右子树都为空,直接删除p节点
        if (replacement == p) {  // detach
            TreeNode pp = p.parent;
            p.parent = null;
            if (pp != null) {
                if (p == pp.left)
                    pp.left = null;
                else if (p == pp.right)
                    pp.right = null;
            }
        }
        if (movable)
            moveRootToFront(tab, r);
    }

    //左旋(动手画一下就懂了)
    static  TreeNode rotateLeft(TreeNode root,
                                          TreeNode p) {
        TreeNode r, pp, rl;
        if (p != null && (r = p.right) != null) {
            if ((rl = p.right = r.left) != null)
                rl.parent = p;
            if ((pp = r.parent = p.parent) == null)
                (root = r).red = false;
            else if (pp.left == p)
                pp.left = r;
            else
                pp.right = r;
            r.left = p;
            p.parent = r;
        }
        return root;
    }
    //右旋(同理,动手画一下)
    static  TreeNode rotateRight(TreeNode root,
                                           TreeNode p) {
        TreeNode l, pp, lr;
        if (p != null && (l = p.left) != null) {
            if ((lr = p.left = l.right) != null)
                lr.parent = p;
            if ((pp = l.parent = p.parent) == null)
                (root = l).red = false;
            else if (pp.right == p)
                pp.right = l;
            else
                pp.left = l;
            l.right = p;
            p.parent = l;
        }
        return root;
    }
    //插入平衡转化
    static  TreeNode balanceInsertion(TreeNode root,
                                                TreeNode x) {
        //默认插入的节点为红色
        x.red = true;
        for (TreeNode xp, xpp, xppl, xppr;;) {
            //1.x为根节点,根节点默认为黑色,并直接返回
            if ((xp = x.parent) == null) {
                x.red = false;
                return x;
            }
            else if (!xp.red || (xpp = xp.parent) == null)
            //2.父节点为黑色,或者祖父节点为空,即父节点是根节点,此时不需要调整
                return root;
            //3.分类讨论,xp为左节点或者右节点
            if (xp == (xppl = xpp.left)) {
                //3.1. 再次分类,如果x的叔父节点:xppr,不为空且为红色节点,此时先进行部分颜色调整
                if ((xppr = xpp.right) != null && xppr.red) {
                    //父节点,叔父节点变为黑色,祖父变为红色,x变成祖父节点
                    xppr.red = false;
                    xp.red = false;
                    xpp.red = true;
                    x = xpp;
                }
                else {
                    //3.1.1. 再次分类,如果x为xp的右孩子,则对xp进行左旋
                    if (x == xp.right) {
                        root = rotateLeft(root, x = xp);
                        //重新对xp,xpp定义
                        xpp = (xp = x.parent) == null ? null : xp.parent;
                    }
                    //这里xp为原来的x为红色,x也是红色,所以先进行颜色调整,然后进行右旋
                    if (xp != null) {
                        xp.red = false;
                        if (xpp != null) {
                            xpp.red = true;
                            root = rotateRight(root, xpp);
                        }
                    }
                }
            }
            else {
                //镜像操作
                if (xppl != null && xppl.red) {
                    xppl.red = false;
                    xp.red = false;
                    xpp.red = true;
                    x = xpp;
                }
                else {
                    if (x == xp.left) {
                        root = rotateRight(root, x = xp);
                        xpp = (xp = x.parent) == null ? null : xp.parent;
                    }
                    if (xp != null) {
                        xp.red = false;
                        if (xpp != null) {
                            xpp.red = true;
                            root = rotateLeft(root, xpp);
                        }
                    }
                }
            }
        }
    }
    //删除平衡转化
    static  TreeNode balanceDeletion(TreeNode root,
                                               TreeNode x) {
        for (TreeNode xp, xpl, xpr;;)  {
            if (x == null || x == root)
                return root;
            else if ((xp = x.parent) == null) {
                x.red = false;
                return x;
            }
            else if (x.red) {
                //1.如果x的红色节点,修改为黑色,无需调整结构,直接返回
                x.red = false;
                return root;
            }
            else if ((xpl = xp.left) == x) {
                //2.x为左节点
                if ((xpr = xp.right) != null && xpr.red) {
                //如果x的叔父节点为红色,此时左边比右边矮,需要左旋
                    xpr.red = false;
                    xp.red = true;
                    root = rotateLeft(root, xp);
                    xpr = (xp = x.parent) == null ? null : xp.right;
                }
                //如果xpr为空,x指向xp
                if (xpr == null)
                    x = xp;
                else {
                //如果xpr不为空,则分别对xpr的左右孩子进行分类
                    TreeNode sl = xpr.left, sr = xpr.right;
                    if ((sr == null || !sr.red) &&
                        (sl == null || !sl.red)) {
                        //如果左孩子,右孩子满足为空或者为黑色节点,xpr转为红色,x指向xp,进入下一次循环,xp会被转成黑色,满足红黑树条件
                        xpr.red = true;
                        x = xp;
                    }
                    else {
                        if (sr == null || !sr.red) {
                        //xpr左子树不为空且为红色
                            if (sl != null)
                            //xpr左子树不为空,将其变成黑色
                                sl.red = false;                                                                                                             //xpr变成红色,不满足红黑树3,4,需要进行右旋
                            xpr.red = true;
                            root = rotateRight(root, xpr);
                            xpr = (xp = x.parent) == null ?
                                null : xp.right;
                        }
                        if (xpr != null) {
                            xpr.red = (xp == null) ? false : xp.red;
                            if ((sr = xpr.right) != null)
                                sr.red = false;
                        }
                        if (xp != null) {
                            xp.red = false;
                            root = rotateLeft(root, xp);
                        }
                        x = root;
                    }
                }
            }
            else { // symmetric
                if (xpl != null && xpl.red) {
                    xpl.red = false;
                    xp.red = true;
                    root = rotateRight(root, xp);
                    xpl = (xp = x.parent) == null ? null : xp.left;
                }
                if (xpl == null)
                    x = xp;
                else {
                    TreeNode sl = xpl.left, sr = xpl.right;
                    if ((sl == null || !sl.red) &&
                        (sr == null || !sr.red)) {
                        xpl.red = true;
                        x = xp;
                    }
                    else {
                        if (sl == null || !sl.red) {
                            if (sr != null)
                                sr.red = false;
                            xpl.red = true;
                            root = rotateLeft(root, xpl);
                            xpl = (xp = x.parent) == null ?
                                null : xp.left;
                        }
                        if (xpl != null) {
                            xpl.red = (xp == null) ? false : xp.red;
                            if ((sl = xpl.left) != null)
                                sl.red = false;
                        }
                        if (xp != null) {
                            xp.red = false;
                            root = rotateRight(root, xp);
                        }
                        x = root;
                    }
                }
            }
        }
    }
}

总结

参考地址

红黑树原理和算法
红黑树插入图解
二叉树的遍历规则
红黑树化过程
推荐:并发情况下:Java HashMap 形成死循环的原因

你可能感兴趣的:(JAVA学习笔记之HashMap)