- 人工智能伦理:技术发展背后的思考
m0_72547478
人工智能
近年来,人工智能技术呈爆发式发展,在医疗、交通、金融等诸多领域取得惊人成果,但与此同时,人工智能伦理问题日益凸显,引发广泛关注。数据隐私与安全首当其冲。AI系统依赖海量数据训练,这些数据包含个人信息、医疗记录等敏感内容。若数据保护不当,极易引发数据泄露风险,侵犯个人隐私。例如,某些智能健康APP,若未能加密传输用户健康数据,一旦遭受黑客攻击,用户的隐私将暴露无遗。算法偏见也是一大痛点。AI算法基于
- 玩转大模型的第一步——提示词(Prompt)工程【抛砖篇】
AI大模型老林
prompt数据挖掘机器学习opencv语音识别人工智能
前言AI大模型提示词工程,又名LLMpromptsProject,指的是在使用大型语言模型(如OpenAI的GPT系列)时,用于引导模型生成特定响应的输入,是在使用AI大模型过程中非常重要的一个环节,是模型生成文本的起点。选择合适的Prompt对大模型回答的质量影响非常大,甚至可能会导致截然不同的结果。Prompt编写框架我们可以简单的看一下,分别使用下面两个Prompt在LLM的输出中分别会得到
- 蓝桥杯备赛笔记(七)排序
小魏´•ﻌ•`
蓝桥杯C++蓝桥杯笔记算法
1.冒泡排序(1)冒泡排序的思想冒泡排序的思想是每次将最大的一下一下运动到最右边,然后将最右边这个确定下来。再来确定第二个大的,再确定第三个大的...对于数组a[],具体的来说,每次确定操作就是从左往右扫描,如果a[i]>a[i+1],我们就执行swap(a[i],a[i+1])将两项交换,然后再往右检查,这样可以找出最大的并将其丢到最右边。第一次确定操作是将a[i]~a[n]中最大的放到a[n]
- CSS 布局的四大宗师:破解 BFC、IFC、GFC 和 FFC 的深层奥秘
dorabighead
前端八股总结css前端
CSS布局的四大宗师:破解BFC、IFC、GFC和FFC的深层奥秘在CSS的江湖中,布局问题犹如无形的桎梏,困扰着每一位前端开发者。有人为浮动塌陷而抓狂,有人被复杂的响应式布局逼得手足无措。而在布局的巅峰,有四位宗师——BFC、IFC、GFC和FFC,它们分别掌控着块级、行内、网格和弹性布局的精髓。掌握它们,不仅仅是技术的进步,更是开启布局新境界的钥匙。今天,我们不再止步于表面,而是深入到它们的核
- (七)- plane/crtc/encoder/connector objects
-佩奇的爸爸
#DRM子系统drmobjects
1,framebuffer/planeRockchipRK3399-DRMframebuffer、plane基础知识-大奥特曼打小怪兽-博客园2,crtcRockchipRK3399-DRMcrtc基础知识-大奥特曼打小怪兽-博客园3,encoder/connector/bridgeRockchipRK3399-DRMencoder、bridge、connector基础知识-大奥特曼打小怪兽-博客
- 实战千问2大模型第五天——VLLM 运行 Qwen2-VL-7B(多模态)
学术菜鸟小晨
千问多模型qwen2vl
一、简介VLLM是一种高效的深度学习推理库,通过PagedAttention算法有效管理大语言模型的注意力内存,其特点包括24倍的吞吐提升和3.5倍的TGI性能,无需修改模型结构,专门设计用于加速大规模语言模型(LLM)的推理过程。它通过优化显存管理、支持大模型的批处理推理以及减少不必要的内存占用,来提高多GPU环境下的推理速度和效率。VLLM的核心特点包括:显存高效性:VLLM能够动态管理显存,
- 冬天的第一场读书会,和技术大咖围炉夜读破万“卷” | 内含福利
腾讯云开发者
腾讯云
引言在这个快节奏、高压力的时代,我们仿佛被一股看不见的力量牵引着,不断地奔跑和追逐。我们似乎总是在寻找着某个目标,但在追寻的过程中,我们又不自觉地陷入了迷茫和彷徨之中。内卷,仿佛成了我们停滞不前的隐形枷锁,让人心生疲惫,却又难以挣脱,只想在躺平中寻找片刻的安宁。然而,在技术的浪潮中,有一群技术人,他们以自己的节奏稳步前行,不断探索和追寻新技术的边界。他们是如何做到在技术的洪流中保持从容,同时又保持
- python3.9安装numpy+mky_windows下python 3.9 Numpy scipy和matlabplot的安装教程详解
Madmoiselle.may
学习python过程中想使用python的matlabplot绘图功能,遇到了一大批问题,然后一路过关斩将,最终安装成功,实为不易,发帖留念。1首先打开cmdwin+r2pip安装pip3install--usernumpyscipymatplotlib–user选项可以设置只安装在当前的用户下,而不是写入到系统目录。默认情况使用国外线路,国外太慢,我们使用清华的镜像就可以:pip3install
- springboot启动时报错 错误: 找不到或无法加载主类 com.xxx.xxx.Application
qiana666
javaspring
springboot启动时报错错误:找不到或无法加载主类com.xxx.xxx.Application从svn上拉下来一个自动生成代码的小项目,遇到一个贼大的坑,运行提示找不到或无法加载主类com.xxx.xxx.Application,找了很多方法才解决,解决方法就是打开idea的控制台,输入以下三行命令mvncleancompilemvninstallmvnspring-boot:run然后,
- 黑客常备十大编程语言,每一个都不容易学,但每一个又很有用
一秋的编程笔记
Python编程计算机科技数据库sql爬虫python自动化编程语言
文章目录1、C语言2、Python3、SQL4、Javascript5、PHP6、C++编程7、JAVA8、Ruby9、Perl10、BashPython学习资源分享1、Python所有方向的学习路线2、学习软件3、精品书籍4、入门学习视频5、实战案例6、清华编程大佬出品《漫画看学Python》7、Python副业兼职与全职路线一定要注意,您选择的编程将在很大程度上取决于您要定位的系统类型和计划使
- SpringBoot整合Quartz
m0_67402564
面试学习路线阿里巴巴android前端后端
目录`Quartz``Quartz`简介`Quartz`优点核心概念`Quartz`的作业存储类型`Cron`表达式`Cron`语法`Cron`语法中每个时间元素的说明`Cron`语法中特殊字符说明在线`Cron`表达式生成器`Springboot`整合`Quartz`数据库表准备`Maven`主要依赖配置文件`quartz.properties``application.properties``
- 项目管理工具 project 替代:2024年8大主流选择
文章将介绍以下8款项目管理工具:1.Worktile;2.PingCode;3.云之家;4.奕锐斯;5.奥博思;6.Monday.com;7.Asana;8.Basecamp。本文整理了2024年8大主流项目管理工具,将详细介绍这些工具的特点以及它们为何能成为市场的热门选择,帮企业找到最符合需求的项目管理工具,轻松掌控项目进度,提升团队协作和产出。一、2024年8大主流项目管理工具1.Workti
- Spark Livy 指南及livy部署访问实践
house.zhang
大数据-Spark大数据
背景:ApacheSpark是一个比较流行的大数据框架、广泛运用于数据处理、数据分析、机器学习中,它提供了两种方式进行数据处理,一是交互式处理:比如用户使用spark-shell,编写交互式代码编译成spark作业提交到集群上去执行;二是批处理,通过spark-submit提交打包好的spark应用jar到集群中进行执行。这两种运行方式都需要安装spark客户端配置好yarn集群信息,并打通集群网
- 提高记忆力day01
三次拒绝王俊凯
记忆力训练学习
前言问题一:如何衡量一个人的记忆力和思维能力呢?(1)记忆的速度(2)记忆的准确度(3)记忆的持久度问题二:你为什么记不住?(1)没有找到正确的记忆方法(2)压力大导致容易紧张(3)疾病和药物的原因(4)吸烟及过度的饮酒问题三:什么是记忆?记忆是对经历过的事务能够记住,并能在以后再现。包括识记,保持,再现。思维问题四:增强记忆和思维能力的三大黄金思维模式(1)善用图像。(2)善用比喻。(3)善于建
- 大数据学习(四):Livy的安装配置及pyspark的会话执行
猪笨是念来过倒
大数据pyspark
一个基于Spark的开源REST服务,它能够通过REST的方式将代码片段或是序列化的二进制代码提交到Spark集群中去执行。它提供了以下这些基本功能:提交Scala、Python或是R代码片段到远端的Spark集群上执行;提交Java、Scala、Python所编写的Spark作业到远端的Spark集群上执行;提交批处理应用在集群中运行。从Livy所提供的基本功能可以看到Livy涵盖了原生Spar
- 隐私计算开源助力数据要素流通
HZGame.
算法安全
主讲老师:李宏宇课程链接:第2讲:隐私计算开源助力数据要素流通丨隐私计算实训营第2期_哔哩哔哩_bilibili1、数据要素流转与数据内外循环这是数据的生命周期也是数据流转的链路图,我们可以发现数据流转可以分为数据采集加工和数据价值释放两个部分,而数据价值释放也分成两个部分:一部分是内循环,数据持有方在自己的运维管控域内对自己的数据使用和安全拥有全责,一部分是外循环,数据要素离开了持有方管控域,在
- AI 在播客领域的应用
姚家湾
播客AI
播客以语言交谈为主,是大语言模型AI可以大展拳脚的地方,比如播客简介,播客节目笔记(shownotes)的自动化生成,播客节目单自动化推荐等等。笔者做了一些探索性实验工作,结果发现,在现有播客的文本描述(通常称为播客的元数据)基础上实现AI推荐是不理想的。这主要是现有的播客节目的文本元数据质量参差不齐,大模型难以做矢量搜索和内容生成。播客元数据存在的问题目前播客存在的问题:播客节目的名称太长,夹杂
- 工业场景将成为AI大模型的重要战场!零基础入门AI大模型,看这篇就够了!
大模型扬叔
人工智能工业多模态大模型
前言2024年,各大公司推出强大理解能力的多模态大模型,将引领人工智能(AI)技术创新和应用,工业场景将成为多模态大模型的最佳实践场地。随着GPT-4o、Gemini1.5Pro、LLaVA1.6的发布,基于Transformer架构和海量数据训练的多模态大模型再次点燃通用人工智能(AGI),其对文本、图像等多模态输入的支持和强大的理解能力也象征着人工智能迈向通用人工智能(AGI)的新阶段。随着工
- 机器视觉算法与边缘计算:打造移动终端上的智能“慧眼”
matlab_python22
计算机视觉
机器视觉算法与边缘计算:打造移动终端上的智能“慧眼”边缘计算的背景数据量激增与实时性需求:随着物联网的快速发展,大量智能设备接入网络,产生的数据量呈爆发式增长。传统云计算模式在处理这些海量实时数据时,面临延迟高、带宽压力大等问题,无法满足如自动驾驶、远程医疗等对实时性要求极高的应用场景的需求。云计算的局限性:云计算虽然提供了强大的计算和存储能力,但在数据传输过程中存在时间延迟,且数据集中存储在云端
- 工业大模型市场图谱:53个工业大模型全面梳理
大模型常客
人工智能agiai大模型ai大模型大模型应用大模型就业
工业场景要求严谨、容错率低,核心业务场景对模型准确率的要求达到95%以上、对幻觉的容忍率为0,因此通用基础大模型的工业知识往往不足以满足工业场景的应用需求。根据沙丘智库发布的《2024年中国工业大模型应用跟踪报告》,工业大模型是指在通用基础大模型(例如文心一言、通义千问等)的基础上,结合行业&场景数据进行预训练和微调,并进行模型压缩(裁剪、蒸馏等)所形成的大模型,包括通用工业大模型、行业大模型以及
- 透过生活小故事,轻松理解大模型开发的五种核心方法
java
大家好,我是大圣,今天聊一下大模型开发的几种方法。大模型开发常用方法前言人工智能的世界听起来复杂神秘,但其实它与我们的日常生活有着许多相似之处。即使你对大模型开发一无所知,也能通过生活中的简单故事,理解其中的奥秘。本文将以贴近生活的五个场景,通俗易懂地讲解大模型开发中的五种核心方法:提示词工程和外部函数、Agent设计、RAG设计(检索增强生成)、微调以及预训练。让我们一同走进这些故事,揭开大模型
- AI绘画工具介绍
编程小郭
ai作画
市面上AI绘画工具众多,它们利用深度学习和图像处理技术,为用户提供了丰富的创作体验和可能性。以下是对几款主流AI绘画工具的详细介绍及横向对比:一、主流AI绘画工具介绍Midjourney简介:Midjourney是一个独立的研究实验室,专注于人工智能绘图,被广泛应用于设计、艺术创作、广告制作等领域。特点:以其强大的图像生成能力和跨界融合的创新特点著称,能够根据文本描述和视觉输入生成兼具故事性与视觉
- 最近,大模型岗位爆了。。。
IT猫仔
人工智能学习ai
重磅消息,国资委打响了国内AI第一枪!宣布央企将把发展AI放在全局统筹地位上,并加快建设一批智能算力中心。这意味着传统行业又迎来了一次大洗牌,这个过程需要大量AI人才!!现在国内头部人工智能公司已经开始用AI数字人助力各行各业,央企+交互数字人将成今年一整年的趋势。除此之外,知名大厂也都在布局AI市场。懂AI的程序员年薪已经翻到80w-96w!风口之下,与其焦虑被行业淘汰,不如先人一步掌握AI大模
- Kimi终于开源了,联手清华开源大模型推理架构Mooncake
吴脑的键客
人工智能架构人工智能
在人工智能迅速发展的时代,大型模型的智能化水平不断提升,但随之而来的推理系统效率挑战也越来越明显。如何应对高推理负载、降低推理成本、缩短响应时间,已成为业界共同面对的重要问题。Kimi公司联合清华大学的MADSys实验室,推出了基于KVCache的Mooncake推理系统设计方案,该方案于2024年6月正式发布。Mooncake推理系统通过创新的PD分离架构和以存换算为中心的理念,显著提升了推理的
- 【大模型】从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!
橙子小哥的代码世界
NLP自然语言理解大模型自然语言处理sklearn深度学习神经网络tensorflow
《从零样本到少样本学习:一文读懂Zero-shot、One-shot和Few-shot的核心原理与应用!》正文:在自然语言处理(NLP)领域,Zero-shot、One-shot和Few-shot学习已经成为衡量大语言模型泛化能力的重要指标。尤其是在大规模预训练模型(如GPT系列)的推动下,这些技术得到了广泛应用和关注。本篇文章将带你全面了解这三种学习方法的核心概念、原理和实际应用场景。1.什么是
- 华为OD机试E卷 ---最大值
努力努力再努力呐
java算法数据结构华为odjava算法数据结构
一、题目描述给定一组整数(非负),重排顺序后输出一个最大的整数。二、示例1用例1输入109输出910说明:输出结果可能非常大,所以你需要返回一个字符串只而不是整数。三、输入描述数字组合四、输出描述最大的整数五、解题思路字符串转换:首先,将整数数组中的每个元素转换为字符串,以便进行字符串比较和拼接。自定义排序:使用自定义的比较器对字符串数组进行排序。比较规则是:对于任意两个字符串a和b,比较a+b和
- Compose Multiplatform+kotlin Multiplatfrom
宝杰X7
androidandroidjetpackkotlinioswebappswift
ComposeMultiplatform+kotlinMultiplatfrom前言功能需求分析好用的库依赖如下shared的build.gradle下面是/gradle/libs.versions.toml下面是androidApp下的build.gradle结尾前言现在Android原生需求日渐减少,多平台或车载,端侧大模型等我看是未来的主流,上一年做了新能源DBC协议的数据可视化显示,将数据
- Optocon光纤温度传感器:精确、耐用、高效的温度监测解决方案
欣佰特cnbestec
网络人工智能
在工业、医疗和科研界的应用中,Optocon光纤温度传感器因其高精度测量、耐高温能力及响应速度和持久的使用寿命等关键特点,赢得了认可和使用。高精度测量:数据可靠性的保证Optocon光纤温度传感器采用先进的光纤技术和高质量材料,实现了±0.2K的高精度测量。这一精确度在精密温度控制应用中尤为重要,如实验室研究、工业过程监控等。Optocon光纤温度传感器的精确测量能力,为用户提供了可靠的数据支持,
- Tesla Free-Fall Attack:特斯拉汽车网络安全事件纪要
wit_@
网络安全web安全
TeslaFree-FallAttack:特斯拉汽车网络安全事件纪要1.引言TeslaFree-FallAttack是由腾讯科恩实验室(TencentKeenSecurityLab)于2016年9月对特斯拉ModelS汽车实施的一次远程攻击事件,揭示了汽车网络安全的严重漏洞,并引发了业界的广泛关注。该事件不仅暴露了特斯拉汽车在信息安全方面的薄弱环节,还对汽车行业的网络安全管理提出了严峻的挑战。2.
- 详解AI大模型的主要指标与国内常见大模型对比分析
wit_@
人工智能AIGC语言模型ai大数据服务器
AI大模型的主要指标与国内常见大模型对比分析随着人工智能技术的快速发展,大模型(LargeAIModels)在自然语言处理、计算机视觉和多模态任务中取得了突破性进展。对于选择和评价AI大模型,不仅需要关注其功能,还要理解其关键指标和性能表现。本文将详细分析AI大模型的主要评价指标,并对国内常见大模型进行具体对比,提供实际数值和深度解析。一、AI大模型的主要指标AI大模型的性能和实用性通常通过以下指
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><