- 探索未来视频创作:Tune-A-Video项目深度解析
刘通双Elsie
探索未来视频创作:Tune-A-Video项目深度解析Tune-A-Video[ICCV2023]Tune-A-Video:One-ShotTuningofImageDiffusionModelsforText-to-VideoGeneration项目地址:https://gitcode.com/gh_mirrors/tu/Tune-A-Video在数字艺术与人工智能的交汇点上,Tune-A-Vi
- 使用LangChain构建简单LLM翻译应用
fGVBSAbe
langchainjava前端python
技术背景介绍在本教程中,我们将学习如何使用LangChain构建一个简单的语言模型(LLM)应用程序,该应用程序用于将文本从英语翻译成其他语言。虽然这个应用程序比较简单,但它是学习LangChain的一个不错的开始,因为许多复杂功能都可以通过简单的提示和LLM调用构建。核心原理解析LangChain通过链式调用多个组件,使得复杂的语言处理任务变得简单易行。我们将使用LangChain的以下功能:语
- 对于编程零基础,第一个语言是 Python 的人有什么建议?
cda2024
python开发语言
在当今数字化时代,编程已成为一项必备技能。无论你是想成为一名专业的软件开发人员,还是希望在数据分析、人工智能等领域有所建树,掌握一门编程语言都是至关重要的第一步。对于许多初学者来说,Python是一个理想的选择。它不仅语法简洁易懂,而且拥有强大的社区支持和丰富的库资源。那么,对于编程零基础且选择Python作为第一门语言的人,有哪些实用的建议呢?1.建立正确的学习心态1.1持之以恒学习编程并不是一
- OpenAI进军实体机器人:GPT赋能的智能未来
前端
近年来,人工智能技术飞速发展,深刻地改变着我们的生活。而OpenAI作为人工智能领域的领军者,其最新动作更是引人注目:进军实体机器人领域!这不仅标志着人工智能技术应用场景的重大拓展,也预示着未来智能机器人时代的加速到来。本文将深入探讨OpenAI的实体机器人战略,分析其背后的深层逻辑,并展望其未来发展趋势与挑战。OpenAI的战略布局:从AI模型到实体机器人OpenAI在人工智能领域已取得了令人瞩
- Python从0到100(七十三):Python OpenCV-OpenCV实现手势虚拟拖拽
是Dream呀
pythonopencv开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 国产海光CPU平台兼容性指南-基础软件分册-20231013(附各系统下载链接)
技术瘾君子1573
服务器&存储服务器兼容列表海光CPU云计算大数据操作系统
目录声明一、操作系统二、虚拟化和云2.1虚拟化和云2.2虚拟机上的操作系统2.2.1VMwarevSphere上的虚拟机操作系统2.2.2KVM上的虚拟机操作系统2.2.3WindowsHyper-V上的虚拟机操作系统2.2.4VirtualBox上的虚拟机操作系统三、分布式存储四、数据库五、中间件六、大数据七、平台组件7.1云平台7.2大数据平台7.3人工智能平台7.4科学与工程计算平台八、其它
- 企业如何打造高效智能问答系统?一文详解架构与实现!
功城师
大语言模型自然语言处理LLM人工智能智能问答RAGAgent
随着人工智能技术的不断发展,智能问答系统成为越来越多企业提升客户服务、知识管理与内部沟通的关键工具。今天我们将深入解析一套智能问答系统的设计思路与技术架构,帮助大家更好地理解如何利用这一系统在实际场景中高效运作。一、智能问答系统的整体架构这套智能问答系统分为前台、AI服务和后台三个核心部分,每个部分承担着不同的职责,分别负责用户交互、问题处理与数据支持。通过这种模块化的设计,整个系统的工作流程得以
- 与机器学习的邂逅--自适应神经网络结构的深度解析
想成为高手499
机器学习与人工智能机器学习神经网络人工智能
引言随着人工智能的发展,神经网络已成为许多应用领域的重要工具。自适应神经网络(AdaptiveNeuralNetworks,ANN)因其出色的学习能力和灵活性,逐渐成为研究的热点。本文将详细探讨自适应神经网络的基本概念、工作原理、关键技术、C++实现示例及其应用案例,最后展望未来的发展趋势。自适应神经网络的基本概念什么是自适应神经网络?自适应神经网络是一种能够根据输入数据的变化和环境的动态特性自动
- 深度解析智能问答系统:如何打造精准、高效的AI对话架构?
和老莫一起学AI
人工智能架构自然语言处理产品经理语言模型学习ai
在人工智能的飞速发展中,智能问答系统(QA系统)逐渐成为了企业内部管理、客户服务、搜索引擎等多个领域中的关键技术。今天,我们将深入探讨一个基于大模型、自然语言处理、知识检索的智能问答系统的架构,详细介绍其技术原理、流程以及未来应用前景。一、系统整体概览在这个智能问答系统中,整个流程可以大致划分为两大部分:前端问答生成与后端离线数据处理。前端部分是用户交互的核心,通过用户的输入、关键词提取、检索和问
- 【AI论文】迈向大型推理模型:大型语言模型增强推理综述
东临碣石82
人工智能语言模型自然语言处理
摘要:语言长久以来被视为人类推理不可或缺的工具。大型语言模型(LLM)的突破激发了利用这些模型解决复杂推理任务的浓厚研究兴趣。研究人员已经超越了简单的自回归词元生成,引入了“思维”的概念——即代表推理过程中间步骤的词元序列。这一创新范式使LLM能够模仿复杂的人类推理过程,如树搜索和反思性思维。近期,一种新兴的学习推理趋势采用强化学习(RL)来训练LLM掌握推理过程。这种方法通过试错搜索算法自动生成
- PostgreSQL - pgvector 插件构建向量数据库并进行相似度查询
花千树-010
RAG数据库postgresqlAI编程
在现代的机器学习和人工智能应用中,向量相似度检索是一个非常重要的技术,尤其是在文本、图像或其他类型的嵌入向量的操作中。本文将介绍如何在PostgreSQL中安装pgvector插件,用于存储和检索向量数据,并展示如何通过Python脚本向数据库插入向量并执行相似度查询。一、安装PostgreSQL并配置pgvector插件1.安装PostgreSQL首先,确保你已经安装了PostgreSQL。可以
- AI行业高压与人才健康:纪念Felix Hill,并探讨AI代码生成工具的价值
前端
今天,我们怀着沉痛的心情悼念GoogleDeepMind研究科学家FelixHill,这位杰出的AI学者在41岁的年纪离开了我们。他的离世引发了我们对AI行业高压环境与人才健康问题的深刻反思。Felix生前曾公开表达AI行业前所未有的压力,这促使我们思考如何利用技术,例如AI代码生成器,来改善开发者的工作环境,提升效率,守护人才健康。FelixHill在自然语言处理和人工智能领域取得了令人瞩目的成
- 2024年AI浪潮:基础设施重构、模型演进与挑战并存
前端
2024年,人工智能领域呈现出蓬勃发展的景象,投资持续增长、基础设施发生变革,技术应用加速落地。各大科技公司和初创企业纷纷涌入,试图在这一充满机遇的领域分一杯羹。本文将深入探讨2024年AI发展的三大核心趋势:AI基础设施的重构、模型发展的新趋势以及AI发展带来的挑战,并重点关注企业如何从AI投资中获得回报,以及AI智能体技术的巨大潜力。选择合适的AI代码生成器将成为企业提升效率的关键。AI基础设
- 直播预告丨精度优于AlphaFold,基于深度学习实现生物大分子及其互作的三维结构预测
「MeetAI4S」系列直播第6期将于1月15日19:00准时开播,HyperAI超神经有幸邀请到了南开大学统计与数据科学学院教授郑伟,他本次分享的主题是「AlphaFold3王座未稳,来自学术界的反超:基于深度学习的生物大分子及其互作的三维结构预测」。蛋白质的功能取决于其独特的三维结构,近年来,基于深度学习等人工智能技术的蛋白质结构预测发展迅猛,AlphaFold甚至获得了2024年诺贝尔化学奖
- Gary Marcus 2025年AI预测:AGI仍在路上,务实发展才是王道
前端
人工智能领域发展日新月异,各种预测层出不穷。知名人工智能专家GaryMarcus近期发布了对2025年AI发展趋势的25项预测,其中最引人注目的是:AGI(通用人工智能)不会在2025年出现。这与一些过于乐观甚至盲目乐观的预测形成了鲜明对比。本文将深入解读Marcus的预测,探讨其背后的逻辑,并结合当前AI技术发展现状进行分析。Marcus的预测整体基调是谨慎乐观,他既肯定了AI在特定领域的进步,
- 数据驱动销售预测的未来:ScriptEcho赋能高效决策
前端
在瞬息万变的商业环境中,准确的销售预测是企业制定有效销售策略、实现业绩增长的基石。传统的销售预测方法往往依赖于人工分析和复杂的电子表格,效率低下,难以应对市场变化的快速冲击。然而,随着大数据的兴起和人工智能技术的飞速发展,数据驱动决策正成为现代企业提升竞争力的关键。本文将探讨销售预测面临的挑战与机遇,并重点介绍ScriptEcho如何通过AI赋能,提升销售预测的准确性和效率,助力企业实现数据驱动增
- 人类为何追求AGI?一个AI代码生成工具的思考
前端
近年来,“AI写代码工具”的出现,无疑为软件开发领域带来了革命性的变化。而我们今天要探讨的,是关于人类对通用人工智能(AGI)的追求,以及这与AI辅助开发工具之间微妙的联系。文章开头就抛出了一个尖锐的问题:人类为何如此痴迷于AGI,而非将更多精力放在改善人类生活本身?文章作者表达了对AGI发展方向的担忧。他认为,目前对AGI的追求,更多地体现在创造能够取代人类的超级智能上,例如“少数派报告式”的行
- AI代码生成工具的未来:杨立昆的洞见与AI革命
前端
近年来,人工智能(AI)领域取得了令人瞩目的进展,特别是以大型语言模型为代表的AI技术,在自然语言处理、图像生成等领域展现出强大的能力。然而,深度学习先驱杨立昆(YannLeCun)却对现有的AI系统提出了尖锐的批评,他认为目前的AI系统“理解能力远不如猫”,缺乏对真实世界的理解和常识。这引发了人们对AI未来发展方向的思考,也为我们探讨AI代码生成工具,以及AI技术对人类社会的影响提供了新的视角。
- 零售业的AI赋能与前端开发效率革命:ScriptEcho 的助力
前端
零售业正经历着前所未有的数字化转型,但同时也面临着巨大的挑战。库存管理混乱、个性化客户体验不足等问题,严重制约着零售企业的盈利能力。而人工智能(AI)的兴起,为解决这些问题提供了新的思路。通过AI驱动的实时库存管理和客户行为分析,零售企业可以显著提升运营效率和客户满意度。然而,构建这些AI赋能的零售应用,需要强大的前端开发能力,这正是AI代码生成器ScriptEcho能够发挥关键作用的地方。AI赋
- AI赋能:2024年,如何用AI提升效率,我的15个实用技巧及2025年展望
前端
2024年,人工智能技术突飞猛进,深刻地改变了我们的工作方式。作为一名科技领域的作者,我亲身体验了AI带来的效率提升。过去一年,我探索了各种AI工具,并将其应用于我的日常工作中,显著缩短了工作流程,节省了大量时间。本文将分享我在2024年使用AI提升生产力的15个实用技巧,并展望2025年AI可能带来的更多可能性。AI赋能下的高效创作:从代码到图像,全方位提升首先,AI极大地辅助了我的编程工作。对
- AI时代的前端开发:技能提升与职业发展之路
前端
在瞬息万变的科技时代,个人职业发展的重要性日益凸显。提升技能,不断学习,已经不再是锦上添花,而是立足之本,是我们在竞争激烈的职场中脱颖而出的关键。而人工智能(AI)技术的快速发展,为我们提供了前所未有的机遇,特别是对于前端开发领域,AI正以前所未有的速度改变着我们的工作方式和学习方式。AI赋能前端开发:个性化学习路径前端开发领域的技术栈庞大而复杂,涵盖HTML、CSS、JavaScript、各种框
- AI赋能:加速产品开发,提升公司竞争力
前端
在当今快节奏的商业环境中,产品开发效率直接关系到公司的生存和发展。然而,许多公司面临着产品开发周期长、成本高、市场响应速度慢等诸多挑战。这些挑战不仅延缓了产品上市时间,也增加了市场竞争的风险。因此,提高产品开发效率,成为企业提升核心竞争力的关键。而人工智能技术的应用,为我们提供了解决这些问题的有效途径。加速产品迭代,快速响应市场需求传统的软件开发流程往往冗长复杂,从需求分析、设计、编码到测试和上线
- 未来教育:AI知识库如何重塑学习体验
知识管理知识库知识库软件
在科技日新月异的今天,教育领域正经历着前所未有的变革。人工智能(AI)技术的快速发展,特别是AI知识库的广泛应用,正在重塑我们的学习体验,使之变得更加高效、个性化和智能化。本文将深入探讨AI知识库如何影响未来教育,以及它如何为学习者提供前所未有的学习体验。一、AI知识库:教育领域的智能助手AI知识库,作为结合了人工智能技术的知识管理系统,不仅能够存储和处理海量信息,还能通过自然语言处理、机器学习等
- AI赋能人力资源:效率提升新路径
前端
引言人工智能(AI)正以前所未有的速度改变着各行各业,从自动驾驶到医疗诊断,AI的应用日益广泛。而人力资源领域,作为企业运营的核心环节,也正经历着AI带来的深刻变革。传统的人力资源管理面临诸多挑战,例如招聘效率低、候选人筛选精准度不足、员工培训成本高昂以及数据分析能力有限等。这些问题不仅影响企业的招聘速度和效率,也制约了企业的发展。为了应对这些挑战,越来越多的企业开始探索AI技术在人力资源领域的应
- 2025 年 JeecgBoot AI 低代码平台白皮书
引言随着人工智能技术的快速发展和数字化转型的深入推进,企业对AI应用的需求日益旺盛。然而,传统AI开发模式存在技术门槛高、开发周期长、成本高昂等问题,难以满足企业快速迭代和敏捷开发的需求。JeecgBoot作为一款优秀的开源低代码开发平台,拥有庞大的用户群体和丰富的功能模块。为了顺应技术发展趋势,满足用户需求,JeecgBoot计划向AI低代码平台转型,打造一款集低代码开发和AI能力于一体的新一代
- 多模态视觉语言模型
funNLPer
计算机视觉语言模型人工智能自然语言处理多模态
文章目录1.多模态大模型概述1.1模型范式1.2训练范式2.BLIP3.BLIP24.LLaVa&LLaVA1.55.QwenVL5.1模型结构5.2训练过程6.参考1.多模态大模型概述1.1模型范式1)模态编码器:模态编码器主要是对来自不同模态的输入进行编码,来获得相应的特征,如视觉方面用ViT,CLIPVIT;音频模态用C-Former,Whisper等进行编码;2)输入Projector:输
- AI大模型学习路线
liuhenghui5201
AIpythonAI大模型
阶段1Python编程基础主要内容掌握的核心能力·Python基础语法·Python数据处理·函数·文件读写·异常处理·模块和包1、掌握Python开发环境基本配置;2、掌握运算符、表达式、流程控制语句、数组等的使用;3、掌握字符串的基本操作;4、初步建立面向对象的编程思维;5、熟悉异常捕获的基本流程及使用方式;6、掌握类和对象的基本使用方式。可解决的现实问题:熟练掌握人工智能Python语言,建
- 2024 年技术盘点与展望:从 AI 辅助到个人成长的多元探索
109702008
杂谈人工智能
一、引言2024年,技术领域的发展日新月异,我在这片汹涌的浪潮中不断探索与成长。这一年,我不仅见证了人工智能技术的飞速发展,还通过AI辅助创作、AI赋能编程以及参与各类竞赛与课程,实现了个人技术的显著提升与视野的拓展。本文将从总结盘点的角度,回顾我在技术领域的成长历程,并对未来进行展望。二、AI辅助创作:提升写作效率与质量在自然语言处理技术(NLP)的推动下,AI写作工具成为了我的得力助手。这些工
- 使用MoA(Mixture of Agents)混合智能体技术,结合多个开源大语言模型如Llama3、phi-3和Mistral,实现一个强大的AI智能体
fc&&fl
大模型实战应用人工智能语言模型自然语言处理
1.简介论文简介:论文提出了一种称为混合智能体(Mixture-of-Agents,MoA)的方法,利用多个大语言模型(LLM)的集体智慧来提高自然语言理解和生成任务的性能。MoA采用了分层结构,每一层包含多个LLM智能体。每个智能体都将前一层所有智能体的输出作为辅助信息来生成自己的回答。通过迭代地综合和优化回答,MoA可以充分利用不同LLM的独特优势。实验发现,即使其他模型提供的辅助回答质量较低
- 什么是多模态机器学习:跨感知融合的智能前沿
非凡暖阳
人工智能神经网络
在人工智能的广阔天地里,多模态机器学习(MultimodalMachineLearning)作为一项前沿技术,正逐步解锁人机交互和信息理解的新境界。它超越了单一感官输入的限制,通过整合视觉、听觉、文本等多种数据类型,构建了一个更加丰富、立体的认知模型,为机器赋予了接近人类的综合感知与理解能力。本文将深入探讨多模态机器学习的定义、核心原理、关键技术、面临的挑战以及未来的应用前景,旨在为读者勾勒出这一
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><