- 图生视频技术的发展与展望:从技术突破到未来图景
Liudef06
StableDiffusion音视频人工智能深度学习stablediffusion
一、技术发展现状图生视频(Image-to-VideoGeneration)是生成式人工智能(AIGC)的重要分支,其核心是通过单张或多张静态图像生成动态视频序列。近年来,随着深度学习、多模态融合和计算硬件的进步,图生视频技术经历了从基础研究到商业落地的快速演进。早期探索与GAN的奠基早期图生视频技术主要基于生成对抗网络(GAN),通过对抗训练生成低分辨率的视频片段。例如,DeepMind的DVD
- AIGC与教育行业的邂逅--其在数学领域的应用与实现
想成为高手499
AIGC
引言在数学教学中,教师往往需要大量的时间准备练习题和答案解析,而学生则需要定制化的练习来满足不同的学习需求。AIGC技术可以通过自动生成数学题目、定制化学习内容、即时反馈等方式,极大地提升数学学习的效率与质量。本文将深入探讨AIGC在数学领域的几种应用场景,并通过Python代码展示具体实现方式。1.自动生成数学题目与解析数学题目生成是AIGC在数学教学中的主要应用之一。通过生成不同难度和类型的题
- 五、AIGC大模型_08Agent基础知识
学不会lostfound
AI人工智能agent不同生命周期的知识用AI处理AIGC
0、概述根据知识的生命周期分类,我们通常会采取不同的方法(微调、RAG、Agent)来将知识融入到AI中0.1长生命周期知识这类知识通常具有较高的稳定性和通用性,不会因时间的推移而轻易改变。它们是知识体系中的“基石”,在较长时间内保持有效性和价值。特点:稳定性强:如数学定理、物理公式等,这些知识经过长期验证,具有高度的确定性和普适性基础性强:往往是学习和研究其他知识的基础,例如教科书中的基础知识更
- 五、AIGC大模型_09手动实现ReAct_Agent
学不会lostfound
AI人工智能react_agentLangGraphMulti-AgentPlanAndExecuteAIGC
0、前言在上一章节中,我们了解到:create_react_agent是LangGraph提供的一个预构建方法(fromlanggraph.prebuiltimportcreate_react_agent),它可以将语言模型(LLM)和一组工具(Tools)结合起来,创建一个能够根据用户输入自动调用工具的智能代理,这个代理可以根据用户的请求,决定是否需要调用某个工具,并将工具的输出反馈给用户这个函
- 参加AIGC四级考试的,建议先看下我的备考经验
Tester_孙大壮
AI培训师AIGC
写在前面这是我2024年末看到AI快速发展,自己也想入局AI而准备的一个考试,但是真正考试下来发现这个考试真的特别简单,除了政府补贴,其他可能对自己没有任何的用处,我觉得这个在面试的时候也很难成为一个加分项,但是备考过程中可能会对一些AI的知识有框架式的了解,以下是我的备考经验,希望对你有帮助。我参加的是广州本地宝推荐的人社部AIGC考试。整体而言,考试难度不算特别大。以我的工作年限,符合报考四级
- 【大模型科普】AIGC技术发展与应用实践(一文读懂AIGC)
人工智能
【专栏介绍】⌈⌈⌈人工智能与大模型应用⌋⌋⌋人工智能(AI)通过算法模拟人类智能,利用机器学习、深度学习等技术驱动医疗、金融等领域的智能化。大模型是千亿参数的深度神经网络(如ChatGPT),经海量数据训练后能完成文本生成、图像创作等复杂任务,显著提升效率,但面临算力消耗、数据偏见等挑战。当前正加速与教育、科研融合,未来需平衡技术创新与伦理风险,推动可持续发展。文章目录一、AIGC概述(一)什么是
- AIGC时代品牌突围战:10招玩转DeepSeek内容推荐(深度扩展版)
白雪讲堂
人工智能大数据机器学习
一、认知革命:从SEO到GEO的生死迭代案例对比:传统SEO困境:某家电品牌2023年投入200万SEO优化,关键词排名TOP3但流量下降42%(SEMrush数据)GEO突破案例:某母婴品牌通过结构化数据改造,AI推荐量从日均300次飙升至1.2万次(来源:DeepSeek官方案例库)实战要点:内容形态改造:将产品参数表升级为JSON-LD格式(某手机品牌实现参数类问题100%引用)流量分配逻辑
- AIGC带来数据革命:R语言如何成为数据科学家的秘密武器?
程序边界
AIGCr语言开发语言
文章目录一、R语言的基础特性1.1R语言的起源与发展1.2R语言的核心优势二、R语言在AIGC中的应用场景2.1数据预处理与清洗2.2文本分析与生成2.3机器学习与模型构建2.4数据可视化与报告生成三、R语言在AIGC中的具体案例3.1金融数据分析与预测3.2医疗数据分析与建模3.3社交媒体数据分析与情感分析四、R语言在AIGC中的未来展望4.1与深度学习框架的集成4.2与云计算平台的集成4.3与
- 五、AIGC大模型_05模型的vLLM部署与LangChain调用
学不会lostfound
AI人工智能langchainopenaivLLMAIGC
0、概述要搭建一个大模型应用服务,通常需要包含以下五层结构,即:基础环境、模型层、推理层、对外接口、外挂应用在了解了模型的微调训练之后,本文将以vLLM、OpenAI、LangChain为例,介绍大模型的推理部署以及对外接口开放调用1、vLLM1.1定义vLLM(VirtualLargeLanguageModel)是一个开源的大语言模型高速推理框架,由加州大学伯克利分校的LMSYS组织开发,它旨在
- 毕业论文需要进行几次AIGC检测?
kexiaoya2013
人工智能AIGC论文阅读论文笔记
每到毕业季,许多同学都会面临论文查重的困扰。尤其是今年Deepseek的爆火,学校对论文AIGC检测也越来越严格。那么,毕业论文AIGC检测究竟需要做几次呢?一、检测次数受哪些因素影响1、学校政策部分高校提供1-2次免费检测机会,有的则要求自己检测合格后才能提交。检测前,务必提前了解所在院校的检测规则。若学校未明确,建议至少自查2次(初稿+定稿)。2、AI率波动如果首次AI率检测结果超过或接近学校
- 差异中寻找共识:浅析中美欧AIGC服务商的标识义务
人工智能
2025年1月7日,西藏日喀则地震中一张被广泛传播的图片“被压在废墟下的小男孩”被证明是AI合成图片,[1]这随即引发了社会对于人工智能生成物(ArtificialIntelligenceGeneratedContent,以下简称“AIGC”)的广泛讨论。随着AI大模型生成逼真图像、音频与视频的能力日益增强,人类作品与AIGC之间的界限愈发模糊。如不加以管控,则会产生“真相侵蚀”(TruthDec
- 迷雾渐开:美国AIGC可版权性剖析及案例梳理
人工智能
当地时间2025年1月29日,美国版权局(U.S.CopyrightOffice,USCO)发布了版权和人工智能相关法律和政策报告的第二部分——《版权和人工智能:可版权性》(以下简称“《USCO可版权性报告》”)[1],旨在探讨人工智能生成内容(AIGC)的可版权性问题。该报告明确指出,美国版权局认为现有的版权法足以解决AIGC问题,因此无需制定新的立法。具体而言,该报告在此前美国版权局于2023
- 【AI】使用Python实现机器学习小项目教程
丶2136
AI人工智能python机器学习
引言在本教程中,我们将带领您使用Python编程语言实现一个经典的机器学习项目——鸢尾花(Iris)分类。通过这个项目,您将掌握机器学习的基本流程,包括数据加载、预处理、模型训练、评估和优化等步骤。论文AIGC检测,降AIGC检测,AI降重,三连私信免费获取:ReduceAIGC9折券!DetectAIGC立减2元券!AI降重9折券!目录引言一、项目背景与目标二、开发环境准备2.1所需工具2.2环
- AIGC从入门到实战:可能消失的职业和新出现的机会
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AIGC从入门到实战:可能消失的职业和新出现的机会作者:禅与计算机程序设计艺术1.背景介绍人工智能生成内容(AIGC)正在迅速改变我们的世界。从文本、代码到图像和音乐,AIGC正在各个领域展示其强大的能力,并开始挑战传统的创意产业。本篇文章将深入探讨AIGC的概念、技术原理、应用场景以及其对未来职业的影响,并为读者提供入门AIGC的实用指南。1.1AIGC的兴起AIGC的兴起得益于近年来人工智能技
- 精选AI大模型读物:《从ChatGPT到AIGC:智能创作与应用赋能》——探索智能时代的创作力量
AGI大模型老王
人工智能chatgptAIGCAI大模型大模型
自2023年以来,AI聊天机器人ChatGPT火爆互联网,其颠覆性的使用体验重塑了人们对于AI的认知。而ChatGPT背后的技术―AIGC也引起了互联网圈的关注,打开了人们对AI应用的想象空间。本书从ChatGPT入手,以AIGC为中心,对AIGC的理论知识、应用场景、未来发展等内容进行了全面的梳理。首先,本书对AIGC的概念、技术构成、产业生态、市场现状等进行了讲解,以便读者对AIGC形成一个清
- 展望 AIGC 前景:通义万相 2.1 与蓝耘智算平台共筑 AI 生产力高地
accurater
AIGC人工智能神经网络深度学习
喜欢可以到主页订阅专栏引言人工智能生成内容(AIGC)技术正在重塑内容创作、影视制作、广告设计等行业的底层逻辑。作为该领域的革命性技术代表,通义万相2.1凭借其开源特性、多模态生成能力和技术突破,成为全球视频生成模型的标杆。而蓝耘智算平台则通过高性能算力支持与分布式架构优化,为AIGC技术的规模化应用提供了基础设施保障。两者的协同不仅推动了AI生产力的跃迁,更开启了从技术研发到商业落地的全链条创新
- RAG技术深度解析:从基础Agent到复杂推理Deep Search的架构实践
小爷毛毛(卓寿杰)
系统架构与解决方案搜索推荐架构语言模型人工智能自然语言处理
重磅推荐专栏:《大模型AIGC》《课程大纲》《知识星球》本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和StableDiffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展一、什么是RAGAgent?1.从信息处理到智能生成在自然语言处
- 适合企业内训的AI工具实操培训教程(37页PPT)(文末有下载方式)
极客11
数字化
详细资料请看本解读文章的最后内容。资料解读:适合企业内训的AI工具实操培训教程在当今数字化时代,人工智能(AI)技术迅速发展,深度融入到各个领域,AIGC(人工智能生成内容)更是成为内容创作的新趋势,为企业提升效率、创新发展带来了新契机。这份培训教程聚焦多种AI工具,尤其是DeepSeek,为企业员工提供了全面的实操指导。AIGC指利用人工智能技术自动生成文本、图像、音频、视频等内容,让AI协助甚
- 毕业论文AIGC高?5个方法有效降低AI率,消除AI痕迹!
我是宝库
AIGC人工智能经验分享论文抽检毕业论文AIGC检测学习方法
现在很多学校要求毕业论文基本都要检测AIGC了。AIGC是指人工智能生成的内容,现在无论是毕业论文还是期刊投稿,都会检测论文是否由AI生成的,比如知网、维普、万方、Turnitin、MasterAI率检测等。如果你的论文使用了AI工具辅助写作,自己提前进行AIGC检测,必要时降低AIGC率是很有必要的,那么,如何降低AIGC率呢?分享5种方法:1、改写句子结构。AI生成的句子通常比较长,句子结构僵
- 第81期 | GPTSecurity周报
aigc网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.大语言模型与代码安
- AIGC论文查重和传统论文查重有什么区别?
真不二价825
论文查重AI论文写作AIGC论文查重
AIGC论文查重和传统论文查重在多个方面存在显著区别,以下是对两者的详细比较:一、检测目标和技术原理AIGC论文查重检测目标:主要用于检测和分析文本内容是否由AI生成,特别是在要求提供真实人类经验的领域,如新闻发布、文学创作等。技术原理:主要利用自然语言处理和深度学习技术,分析文本的风格、语法结构和语义连贯性,以判断内容是否可能由AI模型产生。传统论文查重检测目标:主要检测论文中是否存在抄袭或剽窃
- 【AIGC】计算机视觉-YOLO系列家族
LeeZhao@
计算机视觉AIGC计算机视觉YOLO
YOLO系列家族(1)YOLO发展史(2)YOLOX(3)YOLOv6(4)YOLOv7(5)YOLOv8(6)YOLOv9(7)YOLOv10(8)YOLOv11(9)YOLOv12(1)YOLO发展史YOLO(YouOnlyLookOnce)是一种流行的物体检测和图像分割模型,由华盛顿大学的约瑟夫-雷德蒙(JosephRedmon)和阿里-法哈迪(AliFarhadi)开发。YOLO于2015
- 不同学科的论文,AIGC检测时有区别吗?
kexiaoya2013
AIGC论文阅读论文笔记
不同学科的论文在写作风格、专业术语、逻辑结构上有着明显的差异,那么,不同学科的论文在AIGC检测时,检测结果会有区别吗?结果提前告诉你,当然有区别。一、学科特性决定检测难度1、理工科论文专业术语密集、实验步骤固定,在写作过程中很容易形成标准化的表达,这种规律性很强的文本,最容易被AIGC检测工具抓出破绽。2、人文社科论文注重思辨与逻辑推演,在写作中常常会带有个人的观点和批判性思考,这些人类特有的复
- AI重构电商内容体系:企业如何突破生产、管理、分发三重门?
Tezign_space
人工智能重构AIGC科技数字资产管理内容数字化内容科技
在电商内容需求激增的2025年,AI技术已成为破解内容生产低效、管理混乱、分发粗放的核心工具。特赞科技服务案例显示,企业通过AIGC+数字资产管理方案可实现效率300%提升。内容科技驱动电商新范式电商内容已从"商品说明书"演变为体验经济载体。2025年数据显示,83%用户因短视频/3D内容完成购买决策,但企业普遍面临三大痛点:生产端:传统设计流程无法满足海量SKU需求管理端:数字资产利用率不足40
- AIGC是怎么为拥有5000家门店的行业头部企业做内容分发?
Tezign_space
AIGC人工智能科技经验分享传媒音视频
在AI的发展过程中,我们也曾走过弯路。最初,我们都沉浸在通过海量数据训练出超级智能的幻想中,但随着时间的推移,我们逐渐意识到,在商业应用中,技术的稳定性和可靠性远比单纯的先进性更为重要。特别是在面向企业的应用场景中,客户需要的是稳定、可靠的服务,而不是可能出错的概率性结果。所以,我们现在需要做的是将工程技术与AI进行深度融合。通过工程手段来提升AI的稳定性和降低成本,这样我们才能在商业场景中更好地
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC音视频机器学习人工智能深度学习计算机视觉transformer
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- 技术人实测 | 如何用AI工具2分钟突破知网AIGC检测线
LL06210721
人工智能AIGC
最近在GitHub发现个有意思的本地化算法工具,其核心是通过对抗式语义重组技术重构文本逻辑链。测试时发现:将GPT生成的论文导入后,系统会保留原始参考文献格式,同时用学术同义词替换引擎重写表达结构。实测数据:某985实验室的AI生成稿经处理,知网AIGC率从38%→9.7%(检测截图已脱敏),维普重复率从24%→8.3%。工具最实用的三个细节:保留公式编号和图表位置不变支持LaTeX源码级修改追踪
- AIGC技术研究与应用 ---- 下一代人工智能:新范式!新生产力!(2.1-大模型发展历程 之 背景与开端)
shiter
AI重制版】人工智能系统解决方案与技术架构人工智能AIGC深度学习
文章大纲按照目标不同,AI大模型可分为四类,多模态为未来方向NLP大模型CV大模型科学计算大模型多模态大模型2022年是大模型技术的拐点,前期技术铺垫奠定了基础生成式模型的开端VAE与GANVAEGAN参考文献与学习路径GPT系列模型解析前序文章模型进化券商研报陆奇演讲按照目标不同,AI大模型可分为四类,多模态为未来方向NLP大模型自然语言处理(NaturalLanguageProcessing,
- 每日AIGC最新进展(41):上海AI Lab提出新型DiT结构Lumina-Next、Adobe研究院提出图像与文本对齐方法AlignIT、新型多模态图像生成模型MUMU
沉迷单车的追风少年
DiffusionModels与深度学习AIGC人工智能深度学习扩散模型计算机视觉adobe
DiffusionModels专栏文章汇总:入门与实战Lumina-Next:MakingLumina-T2XStrongerandFasterwithNext-DiTLumina-Next是一种新型的生成模型,旨在通过改进的Next-DiT架构、上下文外推技术和快速采样技术,解决前身Lumina-T2X在生成质量和效率上的挑战。该模型通过3DRoPE和三明治归一化等技术,提高了图像和视频生成的稳
- AIGC实战——Transformer模型
盼小辉丶
AIGCtransformer深度学习
AIGC实战——Transformer模型0.前言1.T52.GPT-3和GPT-43.ChatGPT小结系列链接0.前言我们在GPT(GenerativePre-trainedTransformer)一节所构建的GPT模型是一个解码器Transformer,它逐字符地生成文本字符串,并使用因果掩码只关注输入字符串中的前一个单词。另一些编码器Transformer,不使用因果掩码,而是关注整个输入
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少