【自适应稀疏度量方法和RQAM】疏度测量、RQAM特征、AWSPT和基于AWSPT的稀疏度测量研究(Matlab代码实现)

欢迎来到本博客❤️❤️

博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

本文目录如下:

目录

1 概述

2 运行结果

3 参考文献

4 Matlab代码实现


1 概述

这是一份关于一些经典和新的稀疏度量方法(包括峰度、基尼指数、负熵、Lp/Lq范数、p-q均值、GI2、GI3、广义基尼指数、Box-cox稀疏度量等)。还介绍了自适应稀疏度量方法和RQAM统计特征等更多功能。

这些是稀疏性度量、自适应加权信号预处理技术、自适应稀疏性度量和 RQAM 特征的代码。以基于西安大轴承数据集2-3的图解作为实现示例。

论文[1]是对稀疏性措施的理论研究,并在论文[1]中给出了新的框架RQAM。论文 [2]是一种相关的新方法,它使稀疏性措施能够同时实现明确的早期故障检测和单调退化评估。论文 [3-4] 是使用 RQAM 生成的新的稀疏性度量。我相信通过使用 RQAM 可以轻松生成新的稀疏性度量。

值得指出的是,已经有新的期刊论文发表,其技术路线/基础与作品高度相关[1]和[2]。在这些已发表的论文中开发了一些新的稀疏性度量和RUL预测方法。

[1] 侯斌, 王丹, 夏涛, 王彦, 赵彦, 徐国强, 机器状态监测准算术方法研究, 机械系统信号处理. 151 (2021) 107451. Redirecting

[2] 侯斌, 王丹, 王彦, 闫彤, 彭志, K.-L.Tsui,用于机器健康监测的自适应加权信号预处理技术,IEEE Trans. Instrum。测量 70 (2021) 1–11。Adaptive Weighted Signal Preprocessing Technique for Machine Health Monitoring | IEEE Journals & Magazine | IEEE Xplore

[3] 侯斌, 王丹, 闫彤, 王彦, 彭志, K.-L.Tsui,基尼指数II.和III.:两种新的稀疏性措施及其在机器状态监测中的应用,IEEE/ASME Trans.机电一体化。4435 (2021) 1–1.Gini Indices II and III: Two new Sparsity Measures and Their Applications to Machine Condition Monitoring | IEEE Journals & Magazine | IEEE Xplore

[4] 侯斌, 王丹, 夏彤, L. Xi, Z. Peng, K. Tsui, 广义基尼指数:用于机器状态监测的Box-Cox稀疏性测量的补充稀疏性措施,机械系统信号过程。 169 (2022) 108751. Redirecting

 【自适应稀疏度量方法和RQAM】疏度测量、RQAM特征、AWSPT和基于AWSPT的稀疏度测量研究(Matlab代码实现)_第1张图片

【自适应稀疏度量方法和RQAM】疏度测量、RQAM特征、AWSPT和基于AWSPT的稀疏度测量研究(Matlab代码实现)_第2张图片

2 运行结果

【自适应稀疏度量方法和RQAM】疏度测量、RQAM特征、AWSPT和基于AWSPT的稀疏度测量研究(Matlab代码实现)_第3张图片

 【自适应稀疏度量方法和RQAM】疏度测量、RQAM特征、AWSPT和基于AWSPT的稀疏度测量研究(Matlab代码实现)_第4张图片

【自适应稀疏度量方法和RQAM】疏度测量、RQAM特征、AWSPT和基于AWSPT的稀疏度测量研究(Matlab代码实现)_第5张图片

 部分代码:

FeatureVect(:,i) = RQAMfeature(SE,HealthySignal); % % It returns the adaptive 
    % SM feature vector whose length =11 and RQAM feature whose length is
    % also 12. So, FeatureVect(1:12,i) is adaptive SM feature vector,
    % FeatureVect(13:end,i) is RQAM feature vector
    
end
%% Plot SM features for machine condition monitoring
figure,
for i = 1:12
    subplot(3,4,i), plot(SparMeaVect(i,:))
end

%% Adaptive SM features for machine condition monitoring
figure,
for i = 1:12
    subplot(3,4,i), plot(FeatureVect(i,:))
end

%% RQAM features for machine condition monitoring
figure,
for i = 1:11
    subplot(3,4,i), plot(FeatureVect(12+i,:))
end

3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

 [1] 侯斌, 王丹, 夏涛, 王彦, 赵彦, 徐国强, 机器状态监测准算术方法研究, 机械系统信号处理. 151 (2021) 107451. Redirecting

[2] 侯斌, 王丹, 王彦, 闫彤, 彭志, K.-L.Tsui,用于机器健康监测的自适应加权信号预处理技术,IEEE Trans. Instrum。测量 70 (2021) 1–11。Adaptive Weighted Signal Preprocessing Technique for Machine Health Monitoring | IEEE Journals & Magazine | IEEE Xplore

[3] 侯斌, 王丹, 闫彤, 王彦, 彭志, K.-L.Tsui,基尼指数II.和III.:两种新的稀疏性措施及其在机器状态监测中的应用,IEEE/ASME Trans.机电一体化。4435 (2021) 1–1.Gini Indices II and III: Two new Sparsity Measures and Their Applications to Machine Condition Monitoring | IEEE Journals & Magazine | IEEE Xplore

[4] 侯斌, 王丹, 夏彤, L. Xi, Z. Peng, K. Tsui, 广义基尼指数:用于机器状态监测的Box-Cox稀疏性测量的补充稀疏性措施,机械系统信号过程。 169 (2022) 108751. Redirecting

4 Matlab代码实现

你可能感兴趣的:(matlab,算法,人工智能)