- 为什么使用fork join框架?
ForkJoinPool是ExecutorSerice的一个补充,而不是替代品
并不适合所有场景;
特别适合用于“分而治之”,递归计算的算法;
JAVA8中CompeleteFuture、并发流等都是基于ForkJoinPool实现;
本文将讲述什么样的场景合适、什么样的场景不合适,并且深入剖析为啥某些场景不合适。
- fork join框架使用简单实例
使用RecursiveTask实现一个累加的功能,使用分而治之的思想,实现分段求和后汇总
public class SumTask extends RecursiveTask {
private Integer start = 0;
private Integer end = 0;
public SumTask(int start, int end) {
this.start = start;
this.end = end;
}
@Override
protected Integer compute() {
if (end - start < 100) {
//小于100时直接返回结果
int sumResult = 0;
for (int i = start; i <= end; i++) {
sumResult += i;
}
return sumResult;
} else {
//大于一百时进行分割
int middle = (end + start) / 2;
SumTask leftSum = new SumTask(this.start, middle);
SumTask rightSum = new SumTask(middle, this.end);
leftSum.fork();
rightSum.fork();
return leftSum.join() + rightSum.join();
}
}
public static void main(String[] args) {
SumTask sumTask = new SumTask(1, 999999);
sumTask.fork();
System.out.print("result:" + sumTask.join());
}
}
默认线程池有固定的线程数,会根据可用的availableProcessors
来计算线程数量;
/**
* Creates a {@code ForkJoinPool} with parallelism equal to {@link
* java.lang.Runtime#availableProcessors}, using the {@linkplain
* #defaultForkJoinWorkerThreadFactory default thread factory},
* no UncaughtExceptionHandler, and non-async LIFO processing mode.
*
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public ForkJoinPool() {
this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
defaultForkJoinWorkerThreadFactory, null, false);
}
如果想使用自定义线程池,比如100个线程的线程池,可以如下:
当然无论你初始化多少线程,都只会有和CPU数量相等的几个线程运行,大部分场景下并无异于这个框架的加速;
public static void main(String[] args) {
ForkJoinPool forkJoinPool=new ForkJoinPool(100);
SumTask sumTask = new SumTask(1, 999999);
forkJoinPool.submit(sumTask);
System.out.print("result:" + sumTask.join());
}
我们来看看fork的时候做了些什么
/**
* Arranges to asynchronously execute this task in the pool the
* current task is running in, if applicable, or using the {@link
* ForkJoinPool#commonPool()} if not {@link #inForkJoinPool}. While
* it is not necessarily enforced, it is a usage error to fork a
* task more than once unless it has completed and been
* reinitialized. Subsequent modifications to the state of this
* task or any data it operates on are not necessarily
* consistently observable by any thread other than the one
* executing it unless preceded by a call to {@link #join} or
* related methods, or a call to {@link #isDone} returning {@code
* true}.
*
* @return {@code this}, to simplify usage
*/
public final ForkJoinTask fork() {
Thread t;
if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
((ForkJoinWorkerThread)t).workQueue.push(this);
else
ForkJoinPool.common.externalPush(this);
return this;
}
当前线程不是个ForkJoinWorkerThread
的时候,则加入到ForkJoinPool
线程池(基于ExecutorService
实现);
如果当前线程已经是个ForkJoinWorkerThread
了,则把这个任务加入到当前线程的workQueue
;
这是和普通线程池不同的地方,task并不是交给线程池中的queue,而是放到线程本地的
workQueue
我们来看看ForkJoinPool中的task是如何运行的
a. 线程以LIFO
先进后出方式从本地队列获取任务,执行,直到自己的队列为空;
b. 查看其他ForkJoinWorkerThread
是否有未执行task
,有的话通过work−stealing
窃取,窃取方式为FIFO
先进先出,减少竞争;优先看曾今从自己那里窃取任务的thread,如果有的话;
c. 任务运行完成时,返回结果;
- java8并发流
java8的并发流使用的也是ForkJoinPool
myList.parallelStream.map(obj -> longRunningOperation())
默认使用公用线程池,使用独立线程池的话如下
ForkJoinPool forkJoinPool = new ForkJoinPool(3);
forkJoinPool.submit(() -> {
firstRange.parallelStream().forEach((number) -> {
try {
Thread.sleep(5);
} catch (InterruptedException e) { }
});
});
ForkJoinPool forkJoinPool2 = new ForkJoinPool(3);
forkJoinPool2.submit(() -> {
secondRange.parallelStream().forEach((number) -> {
try {
Thread.sleep(5);
} catch (InterruptedException e) {
}
});
});
4.为什么不适合执行有block比如有io的任务
线程block的时候,线程池会调度线程池队列中的其他未线程运行,这是ExecutorService的机制;
但是ForkJoinPool
中的ForkJoinWorkerThread
工作机制是不停执行本地workQueue
中的task,task是一个个取的,顺序执行,没有塞回去的动作,并不会因为某个task引起block后而换个task继续执行;
参考:
Java Tip: When to use ForkJoinPool vs ExecutorService
http://blog.dyngr.com/blog/2016/09/15/java-forkjoinpool-internals/
https://www.jianshu.com/p/bd825cb89e00
https://www.cnblogs.com/richaaaard/p/6601445.html