- 三个简单最短路
L_M_TY
算法最短路DijkstraFloyd
题目一:E-Train题目链接:E-Train给定N个编号为1至N的城市以及M条铁路。第i条铁路连接城市Ai和Bi,每当时间为Ki的倍数时会同时、分别从Ai和Bi发出开往对方的列车,列车从出发至到达花费Ti时间。开始时你在城市X,输出你到达城市Y的最早时间。若无法到达,输出-1。忽略转车所需要的时间。即,当你T时刻到达某个城市时,可以立刻乘坐T时刻从这个城市发出的列车。数据输入范围:2≤N≤105
- 数字电路设计的基本流程
minstbe
数字电路设计fpga开发
数字电路设计的整个流程可以看作是围绕RTL设计这一关键环节展开的完整芯片设计过程。以下是从RTL出发,逐步扩展到其他环节的详细描述:1.系统级设计(System-LevelDesign)目标:确定芯片的总体功能和性能指标。定义芯片的架构,包括模块划分、数据路径、控制路径等。关键内容:需求分析:确定芯片需要完成的任务,例如计算能力、功耗、面积等。系统建模:使用工具(如MATLAB、SystemC)搭
- DeepSeek:全栈开发者视角下的AI革命者
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3人工智能
DeepSeek:全栈开发者视角下的AI革命者写在前面随着人工智能(AI)技术的不断进步,AI已经成为各行各业创新的核心动力。从自动驾驶到智能制造,再到自然语言处理和图像识别,AI正在逐渐渗透并改变着我们的生活和工作方式。DeepSeek,作为AI领域的新兴技术,凭借其独特的技术架构和颠覆性的创新理念,成为了全栈开发者关注的焦点。本文将从全栈开发者的角度出发,详细解析DeepSeek的诞生、技术架
- 模拟退火算法详解
琛哥的程序
算法模拟退火算法机器学习
一、引言模拟退火算法(SimulatedAnnealing,简称SA)是一种通用概率型优化算法,用来在一个大的搜寻空间内找寻问题的最优解。其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。二、算法原理物理退火过程加温过程
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
应用开发
引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的图像处理应用,重点介绍图像卷积、边缘检测等核心算法的实现。我们将从理论基础出发,逐步构建一个完整的图像处理应用,并通过优化技巧提升性能。图像处理基础1.1图像表示在数字图像处理中,图像通常被表示为一个二维矩阵,每个元素代表一个像素的灰度值或颜色值。在HarmonyNex
- 每日总结3.13
labubu12
c语言
第十五届蓝桥杯c++省赛大学B组1.小球反弹问题(√)(镜像扩展空间,没有碰撞反弹,小球一直前进,到达出发点镜像后的点)#includeusingnamespacestd;intmain(){longlongx=343720,y=233333;longlongdx=15,dy=17;longlongt=1;while(1){if((t*dx)%x==0&&(t*dy)%y==0){break;}t
- HarmonyNext实战:基于ArkTS的跨设备分布式数据同步应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的跨设备分布式数据同步应用开发引言在分布式系统的开发中,跨设备数据同步是一个极具挑战性的问题。随着HarmonyOSNext的发布,ArkTS作为其核心开发语言,为开发者提供了强大的分布式能力。本文将深入探讨如何利用ArkTS在HarmonyNext平台上开发一个跨设备分布式数据同步应用。我们将从分布式数据管理的基础理论出发,逐步构建一个完整的应用,涵盖数
- HarmonyNext实战:基于ArkTS的高性能音视频处理应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能音视频处理应用开发引言在音视频处理领域,实时性和性能是关键。随着HarmonyNext生态系统的不断发展,开发者可以利用ArkTS语言构建高性能的音视频处理应用。本文将深入探讨如何利用ArkTS开发一个音视频处理应用,重点介绍音频处理、视频编解码以及实时流媒体传输的实现。我们将从理论基础出发,逐步构建一个完整的应用,并通过优化技巧提升性能。1.音视
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能图像处理应用开发引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的图像处理应用,重点介绍图像卷积、边缘检测等核心算法的实现。我们将从理论基础出发,逐步构建一个完整的图像处理应用,并通过优化技巧提升性能。1.图像处理基础1.1图像表示在数字图像处理中,图像通常被表示为一个
- 从前端视角理解消息队列:核心问题与实战指南
秋水为渡
前端
消息队列(MessageQueue)是现代分布式系统的核心组件之一,它在前后端协作、系统解耦、流量削峰等场景中发挥着重要作用。本文从前端开发者视角出发,解析消息队列的关键问题,并结合实际场景给出解决方案。一、为什么要使用消息队列?1.前端常见场景异步任务处理:用户行为日志上报、实时通知推送流量削峰:应对秒杀活动、大文件上传等瞬时高并发场景系统解耦:前端与后端服务、第三方服务之间的松耦合通信2.前端
- YOLOv8涨点大全总结(源码)
清风AI
深度学习YOLO计算机视觉神经网络人工智能python
(需要全部源码请私信或留言)性能指标在探讨YOLOv8的性能提升之前,我们需要明确评估其性能的主要指标。这些指标不仅是衡量模型优劣的标准,也是后续改进工作的出发点。常见的性能指标包括:指标名称含义mAP5050%交并比阈值下的平均精度mAP50-9550-95%交并比阈值范围内,步长为5%的平均精度Precision预测正确的正样本占总预测正样本的比例Recall预测正确的正样本占实际正样本总数的
- 金融风控可解释性算法安全优化实践
智能计算研究中心
其他
内容概要在金融风险控制领域,算法的可解释性与安全性已成为技术落地的核心挑战。本文从实际业务场景出发,系统性梳理可解释性算法与联邦学习、特征工程的协同框架,通过超参数优化与动态模型评估机制,构建透明化决策链路。在技术实现层面,重点解析支持向量机与随机森林的改进方案,结合数据清洗与标注的标准化流程,强化风险预测模型在准确率、F1值等关键指标的表现,同时兼顾合规性与安全边界的设计要求。提示:金融机构在部
- 如何合理拆分微服务
微服务
**在微服务架构中,要想做到合理拆分,需要重点关注:服务边界划分、业务耦合度控制、数据隔离策略、服务自治能力、团队组织协调。它们共同决定了微服务架构的灵活度与可维护性,其中,服务边界划分是最基础且最关键的一步。它要求我们从业务领域出发,将高度聚合、密切相关的功能抽离成单独服务,避免粗放的“大而全”式切分。在实际落地时,应当以业务语义、数据交互频率等为出发点,力求服务粒度既不会过细导致管理成本飙升,
- 密码学:网络安全的基石与未来
安全
在数字化时代,网络安全已成为全球关注的焦点。无论是个人隐私的保护,还是国家关键基础设施的安全,都离不开密码学这一核心技术。密码学不仅是信息安全的基石,更是现代社会中数据保密性、完整性和可用性的守护者。本文将从密码学的基本原理出发,结合最新技术发展,探讨其在网络安全中的核心作用。一、密码学的基本原理密码学的核心目标是通过数学方法保护信息的机密性、完整性和真实性。它主要分为两大领域:对称加密和非对称加
- 深入解析:大型机器学习模型的基本概念与特点
AI大模型-大飞
机器学习人工智能AI大模型AI神经网络大模型
大模型是指具有大规模参数和复杂计算结构的机器学习模型。本文从大模型的基本概念出发,对大模型领域容易混淆的相关概念进行区分,并就大模型的发展历程、特点和分类、泛化与微调进行了详细解读,供大家在了解大模型基本知识的过程中起到一定参考作用。本文目录如下:·大模型的定义·大模型相关概念区分·大模型的发展历程·大模型的特点·大模型的分类·大模型的泛化与微调1.大模型的定义大模型是指具有大规模参数和复杂计算结
- 深度学习模块缝合教程:从理论到实践
RockLiu@805
深度学习模块机器视觉深度学习人工智能
深度学习模块缝合教程:从理论到实践引言随着深度学习的不断发展,模型的设计与优化成为研究者关注的核心问题之一。如何有效地“缝合”不同模块,以实现更高效的计算和更强大的功能,是当前深度学习研究中的一个重要课题。在本文中,我们将从基础概念出发,详细探讨深度学习模块缝合的方法、技巧及其应用场景。无论是理论深厚的研究者还是实验导向的实践者,都可以从中获得启发。一、深度学习基础知识详解深度学习是人工智能领域的
- 常见的深度学习优化器
青灯剑客
算法python人工智能机器学习自然语言处理深度学习
一直用优化器解决问题,但是没有对它进行一个系统的总结。。不对,系统的总结进行过,只是时过境迁,早已忘却。一、照进我脑海的几个家伙一开始学习的当然是SGD,只是学着学着就忘记了。后来呢,接触到网上介绍的几种常用的优化器,看着原理挺给力,可是记了好几次都记不住。直到遇到《百面机器学习》,它从最基本的原理出发,给了我一点灵感。(1)几种常用的优化器,详情见这里链接34(2)二、以为自己遇见了大海老师说,
- JavaScript性能优化实战:从瓶颈分析到高效编码策略
AAEllisonPang
Java数据库
一、性能瓶颈分析:从问题出发1.1常见性能问题类型渲染阻塞:同步脚本加载导致DOMContentLoaded延迟内存泄漏:未解绑的事件监听、闭包引用残留重复计算:高频触发的回调函数无节制运算布局抖动:强制同步布局(ForcedSynchronousLayout)网络瓶颈:未优化的资源加载策略典型案例:某电商网站商品筛选功能,用户选择规格时界面卡顿。经分析发现每次选择都会触发全量DOM重新渲染,导致
- 功能测试和接口测试详解
测试老哥
功能测试python软件测试自动化测试接口测试测试用例测试工具
点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快本文主要分为两个部分:第一部分:主要从问题出发,引入接口测试的相关内容并与前端测试进行简单对比,总结两者之前的区别与联系。但该部分只交代了怎么做和如何做?并没有解释为什么要做?第二部分:主要介绍为什么要做接口测试,并简单总结接口持续集成和接口质量评估相关内容。第一部分首先,在做接口测试的过程中,经常有后端开发会问:后端接口都测试什么?怎么
- 新手PCB打样避坑指南:如何选择高性价比厂商
lboyj
人工智能大数据
在电子硬件开发中,PCB打样是验证设计可行性的关键一步。然而,面对市场上数百家PCB厂商,新手往往陷入“选厂难”的困境:既要保证质量,又要控制成本,还要兼顾交期。本文将从核心需求出发,结合行业口碑与技术实测,深度解析猎板PCB等优质厂商的优势,助你快速锁定匹配项目需求的合作伙伴。一、新手选厂的核心考量:从“踩雷”到“精准匹配”1.**工艺能力:决定设计落地的天花板**新手常误以为“低价=划算”,却
- 29.代码随想录算法训练营第二十九天|134. 加油站,135. 分发糖果,860. 柠檬水找零,406. 根据身高重建队列
白鹭鸣鸣!
算法java
29.代码随想录算法训练营第二十九天|134.加油站,135.分发糖果,860.柠檬水找零,406.根据身高重建队列134.加油站-力扣(LeetCode)在一条环路上有n个加油站,其中第i个加油站有汽油gas[i]升。你有一辆油箱容量无限的的汽车,从第i个加油站开往第i+1个加油站需要消耗汽油cost[i]升。你从其中的一个加油站出发,开始时油箱为空。给定两个整数数组gas和cost,如果你可以
- 【从零开始学习JAVA 】This关键字详解
Cools0613
从0开始学Java学习
前言:相信大家在进入JAVA面向对象编程篇章以后,多多少少都见过This关键字,而他的指向很多人总是傻傻搞不清楚,今天我们将从This指针的本质出发,深度剖析This关键字的指向规则。This关键字:作用:1.引用当前对象:在类中的方法中,this用来引用当前对象。例如,通过this可以引用当前对象的成员变量,调用当前对象的方法。publicclassPerson{privateStringnam
- 每天一道算法题【蓝桥杯】【最小路径和】
桦0
题解算法蓝桥杯c++leetcode
思路使用dp表解决问题使用DP表的思路分析在解决最小路径和问题时,动态规划(DP)是一种非常有效的方法。以下是使用DP表的详细思路分析:问题描述给定一个mxn的网格grid,其中每个单元格包含一个非负整数,表示从该单元格出发的路径成本。你需要找到从左上角(0,0)到右下角(m-1,n-1)的路径,使得路径上的成本总和最小。你每次只能向右或向下移动。DP表的定义定义一个二维数组dp,其中dp[i][
- 从原理和公式出发:python实现One_Way_ANOVA
^哪来的&永远~
python算法概率论
文章目录目的:python实现onewayANOVA单因素方差分析1.代码流程2.python代码实现0主要的函数1加载数据2查看数据统计结果3数据处理及可视化4方差分析4.1模型拟合4.2单因素方差分析5PostHoct-test组间比较分析6根据定义自行分解计算对比调用函数的结果7获取F分布对应的P值3.方差分析公式及原理参考目的:python实现onewayANOVA单因素方差分析方差分析(
- HarmonyNext实战:基于ArkTS12+的高性能分布式任务调度系统开发
harmonyos-next
HarmonyNext实战:基于ArkTS12+的高性能分布式任务调度系统开发引言在HarmonyNext生态系统中,分布式任务调度是一个关键的技术领域,尤其是在多设备协同场景下。本文将深入探讨如何利用ArkTS12+语法开发一个高性能的分布式任务调度系统。我们将从基础概念出发,逐步构建一个完整的任务调度模块,涵盖任务分发、负载均衡、故障恢复等关键环节。通过本教程,您将掌握如何在HarmonyNe
- HarmonyNext实战案例:基于ArkTS12+的高性能图像处理应用开发
harmonyos-next
HarmonyNext实战案例:基于ArkTS12+的高性能图像处理应用开发引言在HarmonyNext生态系统中,图像处理是一个重要的应用领域。本文将深入探讨如何使用ArkTS12+开发一个高性能的图像处理应用。我们将从基础概念出发,逐步构建一个完整的图像处理应用,涵盖图像加载、处理、显示等核心功能。通过本案例,读者将掌握ArkTS12+在图像处理中的应用技巧,并能够独立开发类似的应用。1.环境
- 从灾备到未来:HyperBDR助力某国家级社会保障机构启动跨云容灾,激活数字化引擎
万博智云
案例展示公司新闻新闻资讯HyperBDR云容灾客户案例社会保障机构大规模容灾
"HyperBDR令人惊喜,它满足了我们当前的合规和恢复需求,也与我们追求的更加深度的技术融合、持续创新与优化的战略布局相吻合。我们将从灾备体系出发,探索更多基于云原生技术的解决方案,应对未来更为复杂的挑战。"——JuanMartínez,该国家级社会保障机构业务连续性及灾备管理总监一、背景2023年8月,一所国家级社会保障机构的数据中心突发电力中断,致使业务系统停摆近1天,影响医院等医疗机构正常
- 从运营出发:打造更适配当下营商环境的一对一直播系统源码
山东布谷科技官方
直播程序源码直播程序开发直播系统开发直播软件搭建
直播行业风起云涌,竞争日益激烈。想要在红海中脱颖而出,除了精准的运营策略,一个稳定、灵活、功能强大的一对一直播系统软件更是不可或缺的基石。而源码开发搭建,则为直播平台提供了高度定制化和自主可控的优势。那么,山东布谷科技站在运营角度,剖析一对一直播系统软件源码开发搭建该如何进行,才能更适应当下复杂的运营环境呢?一、明确运营目标,指导开发方向源码开发搭建并非盲目堆砌功能,而是要紧密围绕运营目标进行。因
- 软件逆向工程
macity
笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、软件逆向工程是什么?二、重构是什么?三、再工程是什么?四、总结前言软件逆向工程的相关知识。一、软件逆向工程是什么?软件逆向工程(SoftwareReverseEngineering)又称软件反向工程,是指从可运行的程序系统出发,运用解密、反汇编、系统分析、程序理解等多种计算机技术,对软件的结构、流程、算法、代码等进行逆
- MySQL保姆级教程(SQL语法基础篇)从小白到高手的进阶指南,收藏这一篇就够了
网安导师小李
网络安全编程程序员mysqlsqladb安全web安全网络自动化
本章节精心构构造SQL语法学习之旅的基石,旨在从基础出发,逐步深入,全面解析SQL语法规则并辅以丰富实例。通过这一篇章,您将循序渐进地掌握MySQL的核心语法,开启数据库操作的新境界。1:SQL语言概述SQL(StructuredQueryLanguage),简称SQL。结构化查询语言包含6个部分:类型释义范例数据查询语言DQL:DataQueryLanguage如SELECT数据操作语言DML:
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号