kafka复习:(12)KafkaConsumer 之committed和position的用法


import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;

import java.time.Duration;
import java.time.temporal.TemporalUnit;
import java.util.*;
import java.util.concurrent.TimeUnit;
/*
committed和position的用法
 */

public class KafkaTest09 {

    private static Properties getProperties(){
        Properties properties=new Properties();

        properties.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"xx.xx.xx.xx:9092");
        properties.setProperty(ConsumerConfig.GROUP_ID_CONFIG,"testGroup8");
        //设置手动提交位移
        properties.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"false");
        return properties;
    }
    public static void main(String[] args) {

        KafkaConsumer myConsumer=new KafkaConsumer(getProperties());
        myConsumer.subscribe(Arrays.asList("student"));
        TopicPartition topicPartition = new TopicPartition("student", 5);



        while(true){
            ConsumerRecords consumerRecords=myConsumer.poll(Duration.ofMillis(5000));
            for(ConsumerRecord record: consumerRecords){
                System.out.println(record.value());
                System.out.println("record offset is: " + record.offset());
                System.out.println("position is : " + myConsumer.position(topicPartition));


            }

            myConsumer.commitSync();

            OffsetAndMetadata committed = myConsumer.committed(topicPartition);
            System.out.println("consumer committed offset is: " + committed.offset());



        }



    }
}

你可能感兴趣的:(kafka,kafka,分布式)