目录
- Word Squares
- Combination Sum
- Combination Sum II
425. Word Squares
Given a set of words (without duplicates), find all word squares you can build from them.
A sequence of words forms a valid word square if the kth row and column read the exact same string, where 0 ≤ k < max(numRows, numColumns).
For example, the word sequence ["ball","area","lead","lady"] forms a word square because each word reads the same both horizontally and vertically.
b a l l
a r e a
l e a d
l a d y
Note:
There are at least 1 and at most 1000 words.
All words will have the exact same length.
Word length is at least 1 and at most 5.
Each word contains only lowercase English alphabet a-z.
Example 1:
Input:
["area","lead","wall","lady","ball"]
Output:
[
[ "wall",
"area",
"lead",
"lady"
],
[ "ball",
"area",
"lead",
"lady"
]
]
Explanation:
The output consists of two word squares. The order of output does not matter (just the order of words in each word square matters).
题目大意:给定一组无重复的单词,要求选出几个单词,组成一个单词square,横着读和纵着读的内容相同。
解题思路:用前缀表达式记录拥有特定前缀的单词,再用深度优先搜索在满足前缀条件的单词中进行搜索。
//(DFS, backtrace + Prefix tree)
struct TrieNode {
TrieNode(){}
~TrieNode() {}
shared_ptr next[26];
vector words; //words in dict that have the prefix
// for this node
};
void insertWS(const string &word, shared_ptr node) {
for (auto const c : word) {
int idx = c - 'a'; //get idx of node for c
if (node->next[idx] == nullptr) {
//create new trie node
node->next[idx] = make_shared();
}
// move to prefix tree(trie) node with c
node = node->next[idx];
// word is one with prefix contained in node
node->words.push_back(word);
}
}
vector findCandidates(shared_ptr node, const string &prefix) {
for (auto const & c : prefix) {
int idx = c - 'a';
if (node->next[idx] == nullptr) {
return {};
}
node = node->next[idx]; //level-by-level, search the node for input prefix
}
return node->words; //return a copy of words with prefix
}
void wordSquaresDFS(shared_ptr node, const int N, vector &path, vector> &ans) {
size_t newIdx = path.size();
if ((int)newIdx == N) {
//if path is long enough, save into ans
ans.push_back(path);
return;
}
string prefix;
//path length must be shorter than word length
for (auto const & word : path) {
//get the newIdx-th column
prefix += word[newIdx];
}
//take the newIdx-th colum as the new row, find all candidates
// words that contain the row as prefix
vector candidates = findCandidates(node, prefix);
for (auto const & candidate : candidates) {
//choose and un-choose one candidate
path.push_back(candidate);
wordSquaresDFS(node, N, path, ans); //advance to next level
path.pop_back(); //un-choose before return
}
}
vector> wordSquares(vector& words) {
vector> ans;
if (words.size() == 0) {
return ans;
}
// build the trie tree
const int N = (int)words.at(0).size();
auto root = make_shared();
for (auto const & word : words) {
insertWS(word, root);
}
// DFS
vector path;
for (auto const & word : words) {
path.push_back(word);
wordSquaresDFS(root, N, path, ans);
path.pop_back();
}
return move(ans);
}
void WordSquares() {
cout << "WordSquares" << endl;
auto anss = wordSquares(vector{ "area","lead","wall","lady","ball" });
for (auto & ans : anss) {
Print(ans);
}
}
39. Combination Sum
Medium
Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.
The same repeated number may be chosen from candidates unlimited number of times.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [2,3,6,7], target = 7,
A solution set is:
[
[7],
[2,2,3]
]
Example 2:
Input: candidates = [2,3,5], target = 8,
A solution set is:
[
[2,2,2,2],
[2,3,3],
[3,5]
]
题目大意:给定一个数组,要从数组中选几个数,使之和等于一个目标值,数组中每个数都可以被选任意多次。
解题思路:利用深度优先搜索,对数组中的每个数一一“选中”,测试哪一个分支满足条件,保留满足条件的分支。
class Solution {
void combinationSumDFS(const vector& candidates, vector& path, int target, int start, vector> &ans) {
if (target < 0) return;
if (target == 0) {ans.push_back(path); return;}
for (int i = start; i < candidates.size(); ++i) {
path.push_back(candidates[i]);
combinationSumDFS(candidates, path, target - candidates[i], i, ans);
path.pop_back();
}
}
public:
vector> combinationSum(vector& candidates, int target) {
vector> ans;
vector path;
combinationSumDFS(candidates, path, target, 0, ans);
return move(ans);
}
};
测试一下,
Success
Details
Runtime: 8 ms, faster than 99.33% of C++ online submissions for Combination Sum.
Memory Usage: 9.5 MB, less than 80.12% of C++ online submissions for Combination Sum.
40. Combination Sum II
Medium
Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.
Each number in candidates may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [10,1,2,7,6,1,5], target = 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5,
A solution set is:
[
[1,2,2],
[5]
]
题目大意:和上一题基本相同,有差别的在于,数组中的每个元素都只能被选中一次。
解题思路:加一个记录当前数组最近“选中”位置的变量。
class Solution {
void combinationSumDFS(const vector& candidates, vector& path, int target, int start, vector> &ans) {
if (target == 0) {
sort(path.begin(), path.end());
if (find(ans.begin(), ans.end(), path) == ans.end()) {
ans.push_back(path);
}
return;
}
else if (target < 0) {
return;
}
// DFS search range
for (int i = start; i < (int)candidates.size(); i++) {
path.push_back(candidates[i]);
combinationSumDFS(candidates, path, target - candidates[i], i + 1, ans);
path.pop_back();
}
}
public:
vector> combinationSum2(vector& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector> ans;
vector path;
combinationSumDFS(candidates, path, target, 0, ans);
return move(ans);
}
};
测试一下,
Success
Details
Runtime: 44 ms, faster than 15.78% of C++ online submissions for Combination Sum II.
Memory Usage: 9 MB, less than 81.12% of C++ online submissions for Combination Sum II.