Linux内核学习(八)—— 内存管理(基于Linux 2.6内核)

目录

一、页(page)

二、区(zone)

三、页操作

四、kmalloc()

五、vmalloc() 

六、slab 分配器

七、在栈上的静态分配


一、页(page)

内核把物理页作为内存管理的基本单位。尽管处理器的最小可寻        址单位通常为字或字节,但是,内存管理单元(MMU,管理内存并把虚拟地址转换为物理地址的硬件)通常以页为单位进行处理。MMU 以页为单位来管理系统中的页表。从虚拟内存的角度来看,页就是最小单位。

大多数 32 位体系结构支持 4KB 的页,而 64 位体系结构一般会支持 8KB 的页。

内核用 struct page 结构表示系统中的每个物理页,位于 中,定义如下:

Linux内核学习(八)—— 内存管理(基于Linux 2.6内核)_第1张图片

  • flags 用来存放页的状态,比如页是否是脏的(内存数据页和磁盘数据页内容不一致),是不是被锁定在内存中等。flags 每一位都可以表示一种状态,状态标志定义在 中。
  • _count 存放页的引用计数,也就是这一页被引用了多少次。当计数值为 -1 时,就说明当前内核并没有引用这一页,在新的分配中就可以使用它。内核代码不应该直接查看这个参数,而是调用 page_count() 函数进行检查,传入 page 结构,返回 0 表示空闲。
  • virtual 存放页的虚拟地址。 通常情况下,它就是页在虚拟内存中的地址。但有些内存(高端内存)并不永久地映射到内核地址空间上。这种情况下 virtual 的值为 NULL。

page 结构与物理页相关,而并非与虚拟页相关。内核用这一结构来管理系统中所有的页,因为内核需要知道一个页是否空闲。一个页的拥有者可能是用户空间进程、动态分配的内核数据、静态内核代码或页高速缓存。

二、区(zone)

由于硬件的限制,有些页位于内存中的特定的物理地址上,所以不能将其用于一些特定的任务,于是内核把页划分为不同的区(zone) ,由此对具有相似特性的页进行分组。Linux 必须处理如下两种由于硬件存在缺陷而引起的内存寻址问题:

  • 一些硬件只能用某些特定的内存地址来执行 DMA(直接内存访问)。
  • 一些体系结构的内存的物理地址寻址范围比虚拟寻址范围大得多,这样就有一些内存不能永久地映射到内核空间上。

因此,Linux 划分了四种区:

  • ZONE_DMA:这个区包含的页能用来执行 DMA 操作。
  • ZONE_DMA32:这个区包含的页能用来执行 DMA 操作,但这些页面只能被 32 位设备访问。
  • ZONE_NORMAL:这个区包含的都是能正常映射的页。
  • ZONE_HIGHEM:这个区包含高端内存(high memory),其中的页并不能永久地映射到内核地址空间。系统内其余内存就是所谓的低端内存(low memory)。

Linux内核学习(八)—— 内存管理(基于Linux 2.6内核)_第2张图片

Linux 把系统的页划分为分区,形成不同的内存池,这样就可以根据用途进行分配了。区是内存为了管理页而采取的一种逻辑上的分组。

三、页操作

内核提供了几种请求页的接口,所有接口都以页为单位分配内存,定义于 中,最核心的是:

struct page *alloc_pages(gfp_t gfp_mask, unsigned int order)

该函数分配 2^{order} 个连续的物理页,并返回一个指针,指向第一个页的 page 结构体。出错则返回 NULL。

可以用下面这个函数把给定的页的 page 转换成它的逻辑地址:

void *page_address(struct page *page)

该函数返回一个指针,指向给定物理页当前所在的逻辑地址。

Linux内核学习(八)—— 内存管理(基于Linux 2.6内核)_第3张图片

当你不在需要页时可以用下面的函数释放它们:

void __free_pages(struct page *page, unsigned int order)
void free_pages(unsigned long addr, unsigned int order)
void free_page(unsigned long addr)

四、kmalloc()

kmalloc() 函数与用户空间的 malloc() 类似,不过它多了一个 flags 参数,这个函数可以获得以字节为单位的一块内核内存。其在 中声明:

void *kmalloc(size_t size, gfp_t flags)

这个函数返回一个指向 size 大小的内存块指针,并且所分配的内存区在物理地址上是连续的(虚拟地址自然也是连续的)。出错时则返回 NULL。

使用 kfree() 函数可以释放由 kmalloc() 分配出来的内存块:

void kfree(const void *ptr)

如果想要释放的内存不是由 kmalloc() 分配的,或者想要释放的内存早就被释放了,调用这个函数就会有很严重的后果。

五、vmalloc() 

vmalloc() 函数类似于 kmalloc(),但是 vmalloc() 函数分配的内存虚拟地址是连续的,而物理地址则无需连续。malloc() 函数也一样,其在虚拟地址空间内是连续的,但是并不保证它们在物理 RAM 中也是连续的。

void *vmalloc(unsigned long size)
void vfree(const void *addr)

大多数情况下,只有硬件设备用到的内存区必须是物理上连续的块。而供软件使用的内存块就可以使用只有虚拟地址连续的内存块。

六、slab 分配器

分配和释放数据结构是所有内核中最普遍的操作之一,空闲链表包含可供使用的、已分配好的数据结构块,当代码需要一个新的数据结构实例时,就可以从空闲链表中抓取一个,而不需要重新分配内存。空闲链表相当于对象高速缓存,可以快速存储频繁使用的对象类型。

但空闲链表无法全局控制,当可用内存紧缺时,内核无法通知每个空闲链表,让其释放一些内存。所以为了弥补这一缺陷,Linux 内核提供了 slab 层(slab 分配器)slab 分配器扮演了通用数据结构缓存层的角色

  • 下面是 slab 分配器的基本原则:
  • 频繁使用的数据结构应该缓存它们。
  • 频繁分配和回收会导致内存碎片化,为了避免这种情况,空闲链表的缓存会连续地存放,释放的数据结构又会放回空闲链表。
  • 回收的对象可以立即投入下一次分配。
  • 对存放对象进行着色(color),以防止多个对象映射到相同的高速缓存行(cache line)。

slab 分配器把不同的对象划分为不同的高速缓存组,每个高速缓存组都存放不同类型的对象。比如,一个高速缓存用于存放进程描述符(task_struct 结构的一个空闲链表),一个用于存放索引节点对象(struct inode)。

然后,这些高速缓存又被划分为多个 slab,slab由一个或多个物理上连续的页组成。每个 slab 都包含一些被缓存的数据结构,并且每个 slab 都处于三种状态之一:满、部分满或空(注意这里满的意思是所有的数据结构都被使用中,无法分配)。当内核的某一部分需要一个新的对象时,先从部分满的 slab 中进行分配,其次再从空的 slab 中进行分配,如果没有空的 slab,那么就需要创建一个新 slab了。

下面是三者之间的关系:

Linux内核学习(八)—— 内存管理(基于Linux 2.6内核)_第4张图片

slab 负责内存紧缺情况下所有底层的对齐、着色、分配、释放和回收,如果要频繁的创建很多相同类型的对象,那么就应该考虑使用 slab 高速缓存。

七、在栈上的静态分配

用户空间能负担起非常大的栈,而且栈空间还能动态增长,但内核却不能这么奢侈,内核栈小而且固定。当给每个进程分配一个固定大小的栈后,不但可以减小内存的消耗,而且内核也无需负担太重的栈管理任务。

你可能感兴趣的:(Linux内核设计与实现,linux,学习,运维,unix)