扩展欧几里德求解ax + by = c 的 最小正整数解 ( x, y)

大概思路 :
第一步 : 给出方程 ax + by = c 。
第二步 : 算出 辗转相除法 gcd(a, b) 。
第三步 : 运用 扩展欧几里德 ex_gcd(a, b)-》 ax + by = gcd(a,b) 的 一组解(x, y) 。
第三步: 根据 c % gcd(a, b) 判断是否 ax + by = c 有解 。
第四步 : 根据 ax + by = c 的通解公式 x1 = (x + k * ( b / gcd(a, b) )) * (c / gcd(a, b) 令 b1 = b / gcd(a, b) , 所以 x1 的 最小正整数解 为 : x1 = (x1 % b1 + b1) % b1, 对应的 y1 = (c - a*x1) / b.

代码如下 :

/**
   function : work out ax + by = c  ->(x, y) and request that x is least positive integer.
   date : 2017.11.5
   author : LSC
   code : c++
*/
#include 
#include 
#include 
#include 
#define LL long long
using namespace std;
long long int x, y, d;// (x, y) ax+by = Gcd(a, b)的其中的一个解,d 是(a, b)最大公约数

LL Gcd(LL a, LL b)// 欧几里德算法(辗转相除法)求解最大公约数
{
    return (b == 0)? a : Gcd(b, a%b);
}

void ex_gcd(LL a, LL b)// 扩展欧几里德 算法
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        d = a;
    }
    else
    {
        ex_gcd(b, a%b);
        LL temp = x;
        x = y;
        y = temp - a/b*y;
    }
}

int main()
{
    LL a, b, c, gcd;
    
    scanf("%lld%lld%lld", &a, &b, &c);
    gcd = Gcd(a, b);

    if(c % gcd != 0)// 判断是否有解
        printf("Impossible\n");
    else
    {
        ex_gcd(a, b);
        LL x1, y1, b1;
        b1 = b/gcd;
        x1 = (x + b1) * (c/gcd);
        x1 = (x1 % b1 + b1) % b1;// 求解出 x 的 最小正整数解
        y1 = (c - a*x1) / b;

        printf("x = %lld , y = %lld\n", x1, y1);
    }

    return 0;
}

下面再来一个压缩版本的比较短,但和上面计算出的结果都是一样的,我测试过了几组数据了!!!!

#include 
#include 
#include 
#include 
#define LL long long
using namespace std;

void extend_gcd(LL a, LL b, LL& d, LL& x, LL& y)
{
    if(!b){ d = a; x = 1; y = 0; }
    else { extend_gcd(b, a%b,d, y, x); y -= x*(a/b);}
}

int main()
{
    LL a, b, c, d;
    LL x, y, x1, y1;

    cin >> a >> b >> c;

    extend_gcd(a, b, d, x, y);
    if(c % d != 0)
        printf("Impossible\n");
    else
    {
        LL b1 = b / d;
        x1 = (x + b1) * (c / d);
        x1 = (x1 % b1 + b1) % b1;
        y1 = (c - a*x1) / b;

        printf("x = %lld, y = %lld\n", x1, y1);
    }

    return 0;
}

你可能感兴趣的:(ACM,扩展欧几里得)