Runtime 系列文章
深入浅出 Runtime(一):初识
深入浅出 Runtime(二):数据结构
深入浅出 Runtime(三):消息机制
深入浅出 Runtime(四):super 的本质
深入浅出 Runtime(五):具体应用
深入浅出 Runtime(六):相关面试题
目录
- 1. objc_msgSend 方法调用流程
- 2. 消息发送
“消息发送”流程
源码分析- 3. 动态方法解析
“动态方法解析”流程
源码分析- 4. 消息转发
“消息转发”流程
源码分析- 总结
objc_msgSend 执行流程图
1. objc_msgSend 方法调用流程
- 在
OC
中调用一个方法时,编译器会根据情况调用以下函数中的一个进行消息传递:objc_msgSend
、objc_msgSend_stret
、objc_msgSendSuper
、objc_msgSendSuper_stret
。当方法调用者为super
时会调用objc_msgSendSuper
,当数据结构作为返回值时会调用objc_msgSend_stret
或objc_msgSendSuper_stret
。其他方法调用的情况都是转换为objc_msgSend()
函数的调用。
void objc_msgSend(id _Nullable self, SEL _Nonnull op, ...)
- 给
receiver
(方法调用者/消息接收者)发送一条消息(SEL
方法名)
参数 1 :receiver
参数 2 :SEL
参数 3、4、5... :SEL
方法的参数 -
objc_msgSend()
的执行流程可以分为 3 大阶段:
消息发送
动态方法解析
消息转发
2. 消息发送
“消息发送”流程
源码分析
在前面的文章说过,Runtime 是一个用C、汇编
编写的运行时库。
在底层汇编里面如果需要调用 C 函数的话,苹果会为其加一个下划线_,
所以查看objc_msgSend
函数的实现,需要搜索_objc_msgSend
(objc-msg-arm64.s(objc4))。
// objc-msg-arm64.s(objc4)
/*
_objc_msgSend 函数实现
*/
// ⚠️汇编程序入口格式为:ENTRY + 函数名
ENTRY _objc_msgSend
// ⚠️如果 receiver 为 nil 或者 tagged pointer,执行 LNilOrTagged,否则继续往下执行
cmp x0, #0 // nil check and tagged pointer check
b.le LNilOrTagged
// ⚠️通过 isa 找到 class/meta-class
ldr x13, [x0] // x13 = isa
and x16, x13, #ISA_MASK // x16 = class
LGetIsaDone:
// ⚠️进入 cache 缓存查找,传的参数为 NORMAL
// CacheLookup 宏,用于在缓存中查找 SEL 对应方法实现
CacheLookup NORMAL // calls imp or objc_msgSend_uncached
LNilOrTagged:
// ⚠️如果 receiver 为 nil,执行 LReturnZero,结束 objc_msgSend
b.eq LReturnZero // nil check
// ⚠️如果 receiver 为 tagged pointer,则执行其它
......
b LGetIsaDone
LReturnZero:
ret // 返回
// ⚠️汇编中,函数的结束格式为:ENTRY + 函数名
END_ENTRY _objc_msgSend
.macro CacheLookup
// ⚠️根据 SEL 去哈希表 buckets 中查找方法
// x1 = SEL, x16 = isa
ldp x10, x11, [x16, #CACHE] // x10 = buckets, x11 = occupied|mask
and w12, w1, w11 // x12 = _cmd & mask
add x12, x10, x12, LSL #4 // x12 = buckets + ((_cmd & mask)<<4)
ldp x9, x17, [x12] // {x9, x17} = *bucket
// ⚠️缓存命中,进行 CacheHit 操作
1: cmp x9, x1 // if (bucket->sel != _cmd)
b.ne 2f // scan more
CacheHit $0 // call or return imp
// ⚠️缓存中没有找到,进行 CheckMiss 操作
2: // not hit: x12 = not-hit bucket
CheckMiss $0 // miss if bucket->sel == 0
cmp x12, x10 // wrap if bucket == buckets
b.eq 3f
ldp x9, x17, [x12, #-16]! // {x9, x17} = *--bucket
b 1b // loop
3: // wrap: x12 = first bucket, w11 = mask
add x12, x12, w11, UXTW #4 // x12 = buckets+(mask<<4)
// Clone scanning loop to miss instead of hang when cache is corrupt.
// The slow path may detect any corruption and halt later.
ldp x9, x17, [x12] // {x9, x17} = *bucket
1: cmp x9, x1 // if (bucket->sel != _cmd)
b.ne 2f // scan more
CacheHit $0 // call or return imp
2: // not hit: x12 = not-hit bucket
CheckMiss $0 // miss if bucket->sel == 0
cmp x12, x10 // wrap if bucket == buckets
b.eq 3f
ldp x9, x17, [x12, #-16]! // {x9, x17} = *--bucket
b 1b // loop
3: // double wrap
JumpMiss $0
.endmacro
// CacheLookup NORMAL|GETIMP|LOOKUP
#define NORMAL 0
#define GETIMP 1
#define LOOKUP 2
.macro CacheHit
.if $0 == NORMAL // ⚠️CacheLookup 传的参数是 NORMAL
MESSENGER_END_FAST
br x17 // call imp // ⚠️执行函数
.elseif $0 == GETIMP
mov x0, x17 // return imp
ret
.elseif $0 == LOOKUP
ret // return imp via x17
.else
.abort oops
.endif
.endmacro
.macro CheckMiss
// miss if bucket->sel == 0
.if $0 == GETIMP
cbz x9, LGetImpMiss
.elseif $0 == NORMAL // ⚠️CacheLookup 传的参数是 NORMAL
cbz x9, __objc_msgSend_uncached // ⚠️执行 __objc_msgSend_uncached
.elseif $0 == LOOKUP
cbz x9, __objc_msgLookup_uncached
.else
.abort oops
.endif
.endmacro
.macro JumpMiss
.if $0 == GETIMP
b LGetImpMiss
.elseif $0 == NORMAL
b __objc_msgSend_uncached
.elseif $0 == LOOKUP
b __objc_msgLookup_uncached
.else
.abort oops
.endif
.endmacro
// ⚠️__objc_msgSend_uncached
// ⚠️缓存中没有找到方法的实现,接下来去 MethodTableLookup 类的方法列表中查找
STATIC_ENTRY __objc_msgSend_uncached
MethodTableLookup NORMAL
END_ENTRY __objc_msgSend_uncached
.macro MethodTableLookup
blx __class_lookupMethodAndLoadCache3 // ⚠️执行C函数 _class_lookupMethodAndLoadCache3
.endmacro
相反,通过汇编中函数名找对应 C 函数实现时,需要去掉一个下划线_。
// objc-runtime-new.mm(objc4)
IMP _class_lookupMethodAndLoadCache3(id obj, SEL sel, Class cls)
{
// ⚠️注意传参,由于之前已经通过汇编去缓存中查找方法,所以这里不会再次到缓存中查找
return lookUpImpOrForward(cls, sel, obj,
YES/*initialize*/, NO/*cache*/, YES/*resolver*/);
}
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
IMP imp = nil;
bool triedResolver = NO; // triedResolver 标记用于 动态方法解析
runtimeLock.assertUnlocked();
// Optimistic cache lookup
if (cache) { // cache = NO,跳过
imp = cache_getImp(cls, sel);
if (imp) return imp;
}
// runtimeLock is held during isRealized and isInitialized checking
// to prevent races against concurrent realization.
// runtimeLock is held during method search to make
// method-lookup + cache-fill atomic with respect to method addition.
// Otherwise, a category could be added but ignored indefinitely because
// the cache was re-filled with the old value after the cache flush on
// behalf of the category.
runtimeLock.read();
if (!cls->isRealized()) { // ⚠️如果 receiverClass(消息接受者类) 还未实现,就进行 realize 操作
// Drop the read-lock and acquire the write-lock.
// realizeClass() checks isRealized() again to prevent
// a race while the lock is down.
runtimeLock.unlockRead();
runtimeLock.write();
realizeClass(cls);
runtimeLock.unlockWrite();
runtimeLock.read();
}
// ⚠️如果 receiverClass 需要初始化且还未初始化,就进行初始化操作
// 这里插入一个 +initialize 方法的知识点
// 调用 _class_initialize(cls),该函数中会递归遍历父类,判断父类是否存在且还未初始化 _class_initialize(cls->superclass)
// 调用 callInitialize(cls) ,给 cls 发送一条 initialize 消息((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize)
// 所以 +initialize 方法会在类第一次接收到消息时调用
// 调用方式:objc_msgSend()
// 调用顺序:先调用父类的 +initialize,再调用子类的 +initialize (先初始化父类,再初始化子类,每个类只会初始化1次)
if (initialize && !cls->isInitialized()) {
runtimeLock.unlockRead();
_class_initialize (_class_getNonMetaClass(cls, inst));
runtimeLock.read();
// If sel == initialize, _class_initialize will send +initialize and
// then the messenger will send +initialize again after this
// procedure finishes. Of course, if this is not being called
// from the messenger then it won't happen. 2778172
}
// ⚠️⚠️⚠️核心
retry:
runtimeLock.assertReading();
// ⚠️去 receiverClass 的 cache 中查找方法,如果找到 imp 就直接调用
imp = cache_getImp(cls, sel);
if (imp) goto done;
// ⚠️去 receiverClass 的 class_rw_t 中的方法列表查找方法,如果找到 imp 就调用并将该方法缓存到 receiverClass 的 cache 中
{
Method meth = getMethodNoSuper_nolock(cls, sel); // ⚠️去目标类的方法列表中查找方法实现
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, cls); // ⚠️缓存方法
imp = meth->imp;
goto done;
}
}
// ⚠️逐级查找父类的缓存和方法列表,如果找到 imp 就调用并将该方法缓存到 receiverClass 的 cache 中
{
unsigned attempts = unreasonableClassCount();
for (Class curClass = cls->superclass;
curClass != nil;
curClass = curClass->superclass)
{
// Halt if there is a cycle in the superclass chain.
if (--attempts == 0) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (imp) {
if (imp != (IMP)_objc_msgForward_impcache) {
// Found the method in a superclass. Cache it in this class.
log_and_fill_cache(cls, imp, sel, inst, curClass);
goto done;
}
else {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
}
// Superclass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
imp = meth->imp;
goto done;
}
}
}
// ⚠️进入“动态方法解析”阶段
// No implementation found. Try method resolver once.
if (resolver && !triedResolver) {
runtimeLock.unlockRead();
_class_resolveMethod(cls, sel, inst);
runtimeLock.read();
// Don't cache the result; we don't hold the lock so it may have
// changed already. Re-do the search from scratch instead.
triedResolver = YES;
goto retry;
}
// ⚠️进入“消息转发”阶段
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = (IMP)_objc_msgForward_impcache;
cache_fill(cls, sel, imp, inst);
done:
runtimeLock.unlockRead();
return imp;
}
我们来看一下getMethodNoSuper_nolock(cls, sel)
是怎么从类中查找方法实现的
- 如果方法列表是经过排序的,则进行二分查找;
- 如果方法列表没有进行排序,则进行线性遍历查找。
static method_t *
getMethodNoSuper_nolock(Class cls, SEL sel)
{
runtimeLock.assertLocked();
assert(cls->isRealized());
// fixme nil cls?
// fixme nil sel?
for (auto mlists = cls->data()->methods.beginLists(),
end = cls->data()->methods.endLists();
mlists != end;
++mlists)
{
// ⚠️核心函数 search_method_list()
method_t *m = search_method_list(*mlists, sel);
if (m) return m;
}
return nil;
}
static method_t *search_method_list(const method_list_t *mlist, SEL sel)
{
int methodListIsFixedUp = mlist->isFixedUp();
int methodListHasExpectedSize = mlist->entsize() == sizeof(method_t);
if (__builtin_expect(methodListIsFixedUp && methodListHasExpectedSize, 1)) {
// ⚠️如果方法列表是经过排序的,则进行二分查找
return findMethodInSortedMethodList(sel, mlist);
} else {
// ⚠️如果方法列表没有进行排序,则进行线性遍历查找
// Linear search of unsorted method list
for (auto& meth : *mlist) {
if (meth.name == sel) return &meth;
}
}
......
return nil;
}
static method_t *findMethodInSortedMethodList(SEL key, const method_list_t *list)
{
assert(list);
const method_t * const first = &list->first;
const method_t *base = first;
const method_t *probe;
uintptr_t keyValue = (uintptr_t)key;
uint32_t count;
// ⚠️count >>= 1 二分查找
for (count = list->count; count != 0; count >>= 1) {
probe = base + (count >> 1);
uintptr_t probeValue = (uintptr_t)probe->name;
if (keyValue == probeValue) {
// `probe` is a match.
// Rewind looking for the *first* occurrence of this value.
// This is required for correct category overrides.
while (probe > first && keyValue == (uintptr_t)probe[-1].name) {
probe--;
}
return (method_t *)probe;
}
if (keyValue > probeValue) {
base = probe + 1;
count--;
}
}
return nil;
}
我们来看一下log_and_fill_cache(cls, meth->imp, sel, inst, cls)
是怎么缓存方法的
/***********************************************************************
* log_and_fill_cache
* Log this method call. If the logger permits it, fill the method cache.
* cls is the method whose cache should be filled.
* implementer is the class that owns the implementation in question.
**********************************************************************/
static void
log_and_fill_cache(Class cls, IMP imp, SEL sel, id receiver, Class implementer)
{
#if SUPPORT_MESSAGE_LOGGING
if (objcMsgLogEnabled) {
bool cacheIt = logMessageSend(implementer->isMetaClass(),
cls->nameForLogging(),
implementer->nameForLogging(),
sel);
if (!cacheIt) return;
}
#endif
cache_fill (cls, sel, imp, receiver);
}
#if TARGET_OS_WIN32 || TARGET_OS_EMBEDDED
# define SUPPORT_MESSAGE_LOGGING 0
#else
# define SUPPORT_MESSAGE_LOGGING 1
#endif
cache_fill()
函数实现已经在上一篇文章中写到。
关于缓存查找流程和更多cache_t
的知识,可以查看:
深入浅出 Runtime(二):数据结构
2. 动态方法解析
“动态方法解析”流程
- 如果“消息发送”阶段未找到方法的实现,进行一次“动态方法解析”;
- “动态方法解析”后,会再次进入“消息发送”流程,
从“去 receiverClass 的 cache 中查找方法”这一步开始执行。 - 我们可以根据方法类型(实例方法 or 类方法)重写以下方法
+(BOOL)resolveInstanceMethod:(SEL)sel
+(BOOL)resolveClassMethod:(SEL)sel
在方法中调用以下方法来动态添加方法的实现
BOOL class_addMethod(Class cls, SEL name, IMP imp, const char *types)
- 示例代码如下,我们分别调用了 HTPerson 的
eat
实例方法和类方法,而 HTPerson.m 文件中并没有这两个方法的对应实现,我们为这两个方法动态添加了实现,输出结果如下。
// main.m
#import
#import "HTPerson.h"
int main(int argc, const char * argv[]) {
@autoreleasepool {
[[HTPerson new] eat];
[HTPerson eat];
}
return 0;
}
@end
// HTPerson.h
#import
@interface HTPerson : NSObject
- (void)eat; // 没有对应实现
- (void)sleep;
+ (void)eat; // 没有对应实现
+ (void)sleep;
@end
// HTPerson.m
#import "HTPerson.h"
#import
@implementation HTPerson
- (void)sleep
{
NSLog(@"%s",__func__);
}
+ (void)sleep
{
NSLog(@"%s",__func__);
}
+ (BOOL)resolveInstanceMethod:(SEL)sel
{
if (sel == @selector(eat)) {
// 获取其它方法, Method 就是指向 method_t 结构体的指针
Method method = class_getInstanceMethod(self, @selector(sleep));
/*
** 参数1:给哪个类添加
** 参数2:给哪个方法添加
** 参数3:方法的实现地址
** 参数4:方法的编码类型
*/
class_addMethod(self, // 实例方法存放在类对象中,所以这里要传入类对象
sel,
method_getImplementation(method),
method_getTypeEncoding(method)
);
// 返回 YES 代表有动态添加方法实现
// 从源码来看,该返回值只是用来打印解析结果相关信息,并不影响动态方法解析的结果
return YES;
}
return [super resolveInstanceMethod:sel];
}
+ (BOOL)resolveClassMethod:(SEL)sel
{
if (sel == @selector(eat)) {
Method method = class_getClassMethod(object_getClass(self), @selector(sleep));
class_addMethod(object_getClass(self), // 类方法存放在元类对象中,所以这里要传入元类对象
sel,
method_getImplementation(method),
method_getTypeEncoding(method)
);
return YES;
}
return [super resolveClassMethod:sel];
}
@end
-[HTPerson sleep]
+[HTPerson sleep]
源码分析
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
IMP imp = nil;
bool triedResolver = NO;
......
retry:
......
// ⚠️如果“消息发送”阶段未找到方法的实现,进行一次“动态方法解析”
if (resolver && !triedResolver) {
runtimeLock.unlockRead();
_class_resolveMethod(cls, sel, inst); // ⚠️核心函数
runtimeLock.read();
// Don't cache the result; we don't hold the lock so it may have
// changed already. Re-do the search from scratch instead.
triedResolver = YES; // ⚠️标记triedResolver为YES
goto retry; // ⚠️再次进入消息发送,从“去 receiverClass 的 cache 中查找方法”这一步开始
}
// ⚠️进入“消息转发”阶段
......
}
// objc-class.mm(objc4)
void _class_resolveMethod(Class cls, SEL sel, id inst)
{
// ⚠️判断是 class 对象还是 meta-class 对象
if (! cls->isMetaClass()) {
// try [cls resolveInstanceMethod:sel]
// ⚠️核心函数
_class_resolveInstanceMethod(cls, sel, inst);
}
else {
// try [nonMetaClass resolveClassMethod:sel]
// and [cls resolveInstanceMethod:sel]
// ⚠️核心函数
_class_resolveClassMethod(cls, sel, inst);
if (!lookUpImpOrNil(cls, sel, inst,
NO/*initialize*/, YES/*cache*/, NO/*resolver*/))
{
_class_resolveInstanceMethod(cls, sel, inst);
}
}
}
/***********************************************************************
* _class_resolveInstanceMethod
* Call +resolveInstanceMethod, looking for a method to be added to class cls.
* cls may be a metaclass or a non-meta class.
* Does not check if the method already exists.
**********************************************************************/
static void _class_resolveInstanceMethod(Class cls, SEL sel, id inst)
{
// ⚠️查看 receiverClass 的 meta-class 对象的方法列表里面是否有 SEL_resolveInstanceMethod 函数 imp
// ⚠️也就是看我们是否实现了 +(BOOL)resolveInstanceMethod:(SEL)sel 方法
// ⚠️这里一定会找到该方法实现,因为 NSObject 中有实现
if (! lookUpImpOrNil(cls->ISA(), SEL_resolveInstanceMethod, cls,
NO/*initialize*/, YES/*cache*/, NO/*resolver*/))
{
// ⚠️如果没找到,说明程序异常,直接返回
// Resolver not implemented.
return;
}
// ⚠️如果找到了,通过 objc_msgSend 给对象发送一条 SEL_resolveInstanceMethod 消息
// ⚠️即调用一下 +(BOOL)resolveInstanceMethod:(SEL)sel 方法
BOOL (*msg)(Class, SEL, SEL) = (typeof(msg))objc_msgSend;
bool resolved = msg(cls, SEL_resolveInstanceMethod, sel);
// ⚠️下面是解析结果的一些打印信息
......
}
/***********************************************************************
* _class_resolveClassMethod
* Call +resolveClassMethod, looking for a method to be added to class cls.
* cls should be a metaclass.
* Does not check if the method already exists.
**********************************************************************/
static void _class_resolveClassMethod(Class cls, SEL sel, id inst)
{
assert(cls->isMetaClass());
// ⚠️查看 receiverClass 的 meta-class 对象的方法列表里面是否有 SEL_resolveClassMethod 函数 imp
// ⚠️也就是看我们是否实现了 +(BOOL)resolveClassMethod:(SEL)sel 方法
// ⚠️这里一定会找到该方法实现,因为 NSObject 中有实现
if (! lookUpImpOrNil(cls, SEL_resolveClassMethod, inst,
NO/*initialize*/, YES/*cache*/, NO/*resolver*/))
{
// ⚠️如果没找到,说明程序异常,直接返回
// Resolver not implemented.
return;
}
// ⚠️如果找到了,通过 objc_msgSend 给对象发送一条 SEL_resolveClassMethod 消息
// ⚠️即调用一下 +(BOOL)resolveClassMethod:(SEL)sel 方法
BOOL (*msg)(Class, SEL, SEL) = (typeof(msg))objc_msgSend;
bool resolved = msg(_class_getNonMetaClass(cls, inst), // 该函数返回值是类对象,而非元类对象
SEL_resolveClassMethod, sel);
// ⚠️下面是解析结果的一些打印信息
......
}
3. 消息转发
“消息转发”流程
- 如果“消息发送”阶段未找到方法的实现,且通过“动态方法解析”没有解决,
就进入“消息转发”阶段; - “消息转发”阶段分两步进行:Fast forwarding 和 Normal forwarding,顾名思义,第一步速度要比第二步快;
- Fast forwarding:将消息转发给一个其它 OC 对象(找一个备用接收者),
我们可以重写以下方法,返回一个!= receiver
的对象,来完成这一步骤;
+/- (id)forwardingTargetForSelector:(SEL)sel
- Normal forwarding:实现一个完整的消息转发过程,
如果上一步没能解决未知消息,可以重写以下两个方法启动完整的消息转发。
① 第一个方法:我们需要在该方法中返回一个适合该未知消息的方法签名(方法签名就是对返回值类型、参数类型的描述,可以使用 Type Encodings 编码,关于 Type Encodings 可以阅读我的上一篇 blog 深入浅出 Runtime(二):数据结构)。
+/- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
Runtime 会根据这个方法签名,创建一个NSInvocation
对象(NSInvocation
封装了未知消息的全部内容,包括:方法调用者 target、方法名 selector、方法参数 argument 等),然后调用第二个方法并将该NSInvocation
对象作为参数传入。
② 第二个方法:我们可以在该方法中:将未知消息转发给其它对象;改变未知消息的内容(如方法名、方法参数)再转发给其它对象;甚至可以定义任何逻辑。
+/- (void)forwardInvocation:(NSInvocation *)invocation
如果第一个方法中没有返回方法签名,或者我们没有重写第二个方法,系统就会认为我们彻底不想处理这个消息了,这时候就会调用+/- (void)doesNotRecognizeSelector:(SEL)sel
方法并抛出经典的 crash:unrecognized selector sent to instance/class
,结束 objc_msgSend 的全部流程。
- 下面我们来看一下这几个代码的默认实现
// NSObject.mm
+ (id)forwardingTargetForSelector:(SEL)sel {
return nil;
}
+ (NSMethodSignature *)methodSignatureForSelector:(SEL)sel {
_objc_fatal("+[NSObject methodSignatureForSelector:] "
"not available without CoreFoundation");
}
+ (void)forwardInvocation:(NSInvocation *)invocation {
[self doesNotRecognizeSelector:(invocation ? [invocation selector] : 0)];
}
+ (void)doesNotRecognizeSelector:(SEL)sel {
_objc_fatal("+[%s %s]: unrecognized selector sent to instance %p",
class_getName(self), sel_getName(sel), self);
}
- Fast forwarding 示例代码如下:
我们调用了 HTPerson 的eat
实例方法,而 HTPerson.m 文件中并没有该方法的对应实现,HTDog.m 中有同名方法的实现,我们将消息转发给 HTDog 的实例对象,输出结果如下。
// main.m
#import
#import "HTPerson.h"
int main(int argc, const char * argv[]) {
@autoreleasepool {
[[HTPerson new] eat];
}
return 0;
}
@end
// HTPerson.h
#import
@interface HTPerson : NSObject
- (void)eat; // 没有对应实现
@end
// HTPerson.m
#import "HTPerson.h"
#import "HTDog.h"
@implementation HTPerson
- (id)forwardingTargetForSelector:(SEL)aSelector
{
if (aSelector == @selector(eat)) {
return [HTDog new]; // 将 eat 消息转发给 HTDog 的实例对象
// return [HTDog class]; // 还可以将 eat 消息转发给 HTDog 的类对象
}
return [super forwardingTargetForSelector:aSelector];
}
@end
// HTDog.m
#import "HTDog.h"
@implementation HTDog
- (void)eat
{
NSLog(@"%s",__func__);
}
+ (void)eat
{
NSLog(@"%s",__func__);
}
@end
-[HTDog eat]
- Normal forwarding 示例代码及输出结果如下:
// HTPerson.m
#import "HTPerson.h"
#import "HTDog.h"
@implementation HTPerson
- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
{
if (aSelector == @selector(eat)) {
return [[HTDog new] methodSignatureForSelector:aSelector];
//return [NSMethodSignature signatureWithObjCTypes:"v@:i"];
}
return [super methodSignatureForSelector:aSelector];
}
- (void)forwardInvocation:(NSInvocation *)anInvocation
{
// 将未知消息转发给其它对象
[anInvocation invokeWithTarget:[HTDog new]];
// 改变未知消息的内容(如方法名、方法参数)再转发给其它对象
/*
anInvocation.selector = @selector(sleep);
anInvocation.target = [HTDog new];
int age;
[anInvocation getArgument:&age atIndex:2]; // 参数顺序:target、selector、other arguments
[anInvocation setArgument:&age atIndex:2]; // 参数的个数由上个方法返回的方法签名决定,要注意数组越界问题
[anInvocation invoke];
int ret;
[anInvocation getReturnValue:&age]; // 获取返回值
*/
// 定义任何逻辑,如:只打印一句话
/*
NSLog(@"好好学习");
*/
}
@end
-[HTDog eat]
源码分析
// objc-runtime-new.mm(objc4)
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
......
// ⚠️如果“消息发送”阶段未找到方法的实现,且通过“动态方法解析”没有解决
// ⚠️进入“消息转发”阶段
imp = (IMP)_objc_msgForward_impcache; // 进入汇编
cache_fill(cls, sel, imp, inst); // 缓存方法
......
}
// objc-msg-arm64.s(objc4)
STATIC_ENTRY __objc_msgForward_impcache
b __objc_msgForward
END_ENTRY __objc_msgForward_impcache
ENTRY __objc_msgForward
adrp x17, __objc_forward_handler@PAGE // ⚠️执行C函数 _objc_forward_handler
ldr x17, [x17, __objc_forward_handler@PAGEOFF]
br x17
END_ENTRY __objc_msgForward
// objc-runtime.mm(objc4)
// Default forward handler halts the process.
__attribute__((noreturn)) void
objc_defaultForwardHandler(id self, SEL sel)
{
_objc_fatal("%c[%s %s]: unrecognized selector sent to instance %p "
"(no message forward handler is installed)",
class_isMetaClass(object_getClass(self)) ? '+' : '-',
object_getClassName(self), sel_getName(sel), self);
}
void *_objc_forward_handler = (void*)objc_defaultForwardHandler;
可以看到_objc_forward_handler
是一个函数指针,指向objc_defaultForwardHandler()
,该函数只是打印信息。由于苹果没有对此开源,我们无法再深入探索关于“消息转发”的详细执行逻辑。
我们知道,如果调用一个没有实现的方法,并且没有进行“动态方法解析”和“消息转发”处理,会报经典的 crash:unrecognized selector sent to instance/class
。我们查看 crash 打印信息的函数调用栈,如下,可以看的系统调用了一个叫___forwarding___
的函数。
该函数是 CoreFoundation 框架中的,苹果对此函数尚未开源,我们可以打断点进入该函数的汇编实现。
以下是从网上找到的___forewarding___
的 C 语言伪代码实现。
// 伪代码
int __forwarding__(void *frameStackPointer, int isStret) {
id receiver = *(id *)frameStackPointer;
SEL sel = *(SEL *)(frameStackPointer + 8);
const char *selName = sel_getName(sel);
Class receiverClass = object_getClass(receiver);
// ⚠️⚠️⚠️调用 forwardingTargetForSelector:
if (class_respondsToSelector(receiverClass, @selector(forwardingTargetForSelector:))) {
id forwardingTarget = [receiver forwardingTargetForSelector:sel];
// ⚠️判断该方法是否返回了一个对象且该对象 != receiver
if (forwardingTarget && forwardingTarget != receiver) {
if (isStret == 1) {
int ret;
objc_msgSend_stret(&ret,forwardingTarget, sel, ...);
return ret;
}
//⚠️objc_msgSend(返回值, sel, ...);
return objc_msgSend(forwardingTarget, sel, ...);
}
}
// 僵尸对象
const char *className = class_getName(receiverClass);
const char *zombiePrefix = "_NSZombie_";
size_t prefixLen = strlen(zombiePrefix); // 0xa
if (strncmp(className, zombiePrefix, prefixLen) == 0) {
CFLog(kCFLogLevelError,
@"*** -[%s %s]: message sent to deallocated instance %p",
className + prefixLen,
selName,
receiver);
}
// ⚠️⚠️⚠️调用 methodSignatureForSelector 获取方法签名后再调用 forwardInvocation
if (class_respondsToSelector(receiverClass, @selector(methodSignatureForSelector:))) {
// ⚠️调用 methodSignatureForSelector 获取方法签名
NSMethodSignature *methodSignature = [receiver methodSignatureForSelector:sel];
// ⚠️判断返回值是否为 nil
if (methodSignature) {
BOOL signatureIsStret = [methodSignature _frameDescriptor]->returnArgInfo.flags.isStruct;
if (signatureIsStret != isStret) {
CFLog(kCFLogLevelWarning ,
@"*** NSForwarding: warning: method signature and compiler disagree on struct-return-edness of '%s'. Signature thinks it does%s return a struct, and compiler thinks it does%s.",
selName,
signatureIsStret ? "" : not,
isStret ? "" : not);
}
if (class_respondsToSelector(receiverClass, @selector(forwardInvocation:))) {
// ⚠️根据方法签名创建一个 NSInvocation 对象
NSInvocation *invocation = [NSInvocation _invocationWithMethodSignature:methodSignature frame:frameStackPointer];
// ⚠️调用 forwardInvocation
[receiver forwardInvocation:invocation];
void *returnValue = NULL;
[invocation getReturnValue:&value];
return returnValue;
} else {
CFLog(kCFLogLevelWarning ,
@"*** NSForwarding: warning: object %p of class '%s' does not implement forwardInvocation: -- dropping message",
receiver,
className);
return 0;
}
}
}
SEL *registeredSel = sel_getUid(selName);
// selector 是否已经在 Runtime 注册过
if (sel != registeredSel) {
CFLog(kCFLogLevelWarning ,
@"*** NSForwarding: warning: selector (%p) for message '%s' does not match selector known to Objective C runtime (%p)-- abort",
sel,
selName,
registeredSel);
} // ⚠️⚠️⚠️调用 doesNotRecognizeSelector
else if (class_respondsToSelector(receiverClass,@selector(doesNotRecognizeSelector:))) {
[receiver doesNotRecognizeSelector:sel];
}
else {
CFLog(kCFLogLevelWarning ,
@"*** NSForwarding: warning: object %p of class '%s' does not implement doesNotRecognizeSelector: -- abort",
receiver,
className);
}
// The point of no return.
kill(getpid(), 9);
}
总结
至此,objc_msgSend
方法调用流程就已经讲解结束了。下面来做一个小总结。
objc_msgSend 执行流程图
下一篇
深入浅出 Runtime(四):super的本质