- 情感分析研究综述:方法演化与前沿挑战
next_travel
人工智能机器学习深度学习
文章目录摘要abstract1.引言2.模型方法2.1文本情感分析2.1.1文档级情感分类2.1.2句子级情感分类2.1.3方面级情感分类2.2文本情感分析方法2.2.1基于词典的方法2.2.2基于机器学习的方法2.2.3基于深度学习方法2.3视觉情感分析2.4音频情感分析2.5多模态情感分析2.5.1图文方法2.5.2视听方法2.5.3音频-图像-文本方法3.情感分析的挑战3.1讥讽检测3.2模
- AI 百炼成神:线性回归,预测房价
github_czy
AI百炼成神:100个项目玩转人工智能python开发语言
我们开始第一个项目——线性回归:预测房价。这是一个经典的机器学习入门项目,可以帮助你理解如何使用线性回归模型来预测连续的数值。第一个项目:线性回归预测房价项目目标学习线性回归的基本概念。使用历史房价数据建立一个预测模型。理解如何评估模型的性能。项目步骤准备数据集为了演示线性回归,我们将使用一个常见的房价数据集:波士顿房价数据集(BostonHousingDataset)。这个数据集包含了多个特征(
- c++实现贪吃蛇游戏
lyh不会打代码
算法c++贪吃蛇游戏策划
摘要:本文将介绍以C++编写贪吃蛇游戏的过程,包括游戏规则、设计思路、主要功能的实现以及注意事项。最后,我们给出了完整的C++代码,供读者参考和学习。目录引言游戏规则设计思路蛇的移动:食物生成:碰撞检测:画面绘制:具体实现注意事项最终代码总结引言贪吃蛇是一款经典的电子游戏,最初是在20世纪70年代普及的,现在已经成为了一种普遍的游戏形式。玩家操纵一个蛇,在屏幕上移动并吃掉食物,每吃掉一个食物,蛇就
- 基于基于强化学习(Q-Learning)用于底层动态频谱接入(DSA)认知无线电网络的资源分配研究(Matlab代码实现)
长安程序猿
网络matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、动态频谱接入(DSA)的基本原理与挑战1.DSA的核心机制2.关键挑战二、Q-Learning在DSA资源分配中的应用框架1.算法原理2.典型应用场景三、关键参数与模型设计1.状态空间定义2.动作空间设计3.奖励函数设计四、研究进展与优化方法1.
- 用deepseek学大模型08-卷积神经网络(CNN)
wyg_031113
机器学习人工智能
yuanbao.tencent.com从入门到精通卷积神经网络(CNN),着重介绍的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。一、目标函数与损失函数数学推导1.均方误差(MSE)标量形式:E(w)=12∑i=1N(yi−y^i)2E(\mathbf{w})=\f
- DeepSeek自研AI芯片,AI算力新变革?
人工智能深度学习机器学习算法
最近,DigiTimes的一份报告让AI圈炸开了锅:DeepSeek正全力开发专有AI芯片。有消息称,DeepSeek已开启大规模半导体设计人才招聘,种种迹象表明,其自研芯片计划已从设想步入实质推进阶段。AI算力告急,成本掣肘发展当下,AI技术迅猛发展,从科研领域的复杂模型训练,到日常生活里智能语音助手的实时交互,算力成了决定AI发展的关键因素。作为大模型领域的后起之秀,DeepSeek对计算资源
- RabbitMQ,RocketMQ,Kafka 消息模型对比分析
Java架构设计
javaJava程序员消息模型开发语言程序人生
消息模型消息队列的演进消息队列模型早期的消息队列是按照”队列”的数据结构来设计的。生产者(Producer)产生消息,进行入队操作,消费者(Consumer)接收消息,就是出队操作,存在于服务端的消息容器就称为消息队列。当然消费者也可能不止一个,存在的多个消费者是竞争的关系,消息被其中的一个消费者消费了,其它的消费者就拿不到消息了。发布订阅模型如果一个人消息想要同时被多个消费者消费,那么上面的队列
- 深度求索-DeepSeek-R1本地部署指南
0小和尚化缘12
个人开发
1、参考:部署指南2、参考:deepseek本地部署只需三步DeepSeek本地部署只需三步:1、安装运行环境:安装Ollama:Ollama官网:官网2、下载模型:参数越大,需要物里硬件越多3、安装部署前端交互程序:都是现成的开源架构
- yolov5 pt->onnx->om yolov5模型转onnx转om模型转换
qq_43650438
笔记深度学习tensorflow人工智能
yolov5pt->onnx->omyolov5-6.1版本models/yolo.pyDetect函数修改classDetect(nn.Module):defforward(self,x):z=[]#inferenceoutputforiinrange(self.nl):x[i]=self.m[i](x[i])#convbs,_,ny,nx=x[i].shape#x(bs,255,20,20)t
- Flutter:动态表单(在不确定字段的情况下,生成动态表单)
sunly_
Flutterflutterjava前端
关于数据模型:模型就是一种规范约束,便于维护管理,在不确定表单内会出现什么数据时,就没有模型一说。这时就要用到动态表单(根据接口返回的字段,生成动态表单)1、观察数据格式,定义模型modelData:[{id:1,name:'模型一',ctaVal:{"first_usdt":{"val":"10","title":"首仓金额","unit":"usdt","read":"0"},}},{id:2
- LVS高性能原因揭秘
天亮i
请你做好思考的准备,跟着我的思路,去一点一点,把这么一个知识的历程,把它研究透彻,你会受益匪浅。OSI网络分层我们都应该知道,有OSI网络分层模型这么一个概念。此外,由于我们学的是软件工程学,为什么有一个工程这俩字在里面,那就说明了不是纯学术上的一个研究,是有具体的工程去做的。那么就涉及到分层解耦这么一个思想,任何一个层,只需要关心它这一层的事,而不用去管其它层具体是怎么做的。那么,对于每一层,就
- 【虚拟仿真】Unity3D中如何实现让3D模型显示在UI前面
恬静的小魔龙
#Unity3DVR/AR开发unity3dui
推荐阅读CSDN主页GitHub开源地址Unity3D插件分享简书地址我的个人博客QQ群:1040082875大家好,我是佛系工程师☆恬静的小魔龙☆,不定时更新Unity开发技巧,觉得有用记得一键三连哦。一、前言最近有小伙伴在群里问我,如何将3D模型显示在UI前面,比如这样:
- 数据权限校验实践
fengdongnan
数据库前端网络
数据权限控制实践最近在实习中为公司项目完成一个文件数据权限校验代码的转换重构,写这篇博客来记录前后两种权限校验的实现方案与相关概念原实现方案:RBAC-基于角色的访问控制RBAC(Role-BasedAccessControl)RBAC是一种常见的访问控制模型,它通过角色来分配权限。在RBAC模型中,角色是一组权限的集合,用户通过被分配角色来获得相应的权限。RBAC的主要特点包括:角色分配:用户被
- 为什么数据库和数据库连接池不采用类似java nio的IO多路复用技术使用一个连接来维护和数据库的数据交换?
harmful_sheep
springboot数据库javanio
类似java的nio相比于传统阻塞io模型来说,有效率高(特别在高并发情况下)和资源耗费相对较少的优点。传统的阻塞IO为了提高效率,需要创建一定数量的连接形成连接池,而nio仅需要一个连接即可(大部分情况下一个连接即可)。那么请问,数据库和数据库连接池为什么不采用这种方式?。IO多路复用被视为是非常好的性能助力器。但是一般我们在使用DB时,还是经常性采用c3p0,tomcatconnectionp
- PaddleOCR面板恢复python脚本--针对pdf的面板恢复
zsh669
paddlepaddleocr百度pythonpdf
问题在做一个项目的时候,使用PaddleOCR提供的模型,实现对图片或者pdf进行面板恢复,并保存为.docx文档。但是,官方的文档只提供了针对图片进行面板恢复的python脚本,没有提供pdf进行面板恢复的python脚本,官方只提供了pdf面板恢复的命令行使用方法,因此,我去看了PaddleOCR的源码,将命令行方法转换为python脚本准备工作环境配置和文档请参考:\ppstructure/
- DeepSeek 实用集成 - 大模型能力轻松接入各类软件
code在飞
ai
将DeepSeek大模型能力轻松接入各类软件详细点击awesome-deepseek-integration/README_cn.mdatmain·deepseek-ai/awesome-deepseek-integration·GitHub
- Deepseek 组合落地都是王炸
qqxinxi
运维教学运维deepseekpython大数据
思维即资产,模型是股东。有了Deepseek模型,思维资产才能增值。Deepseek+kimi自动生成PPTDeepseek+ClineAI编程好帮手Deepseek+剪映一键生成短视频Deepseek+MJ设计师诞生Deepseek+Dify企业快速搭建本地知识库Deepseek+Notion文本知识库Deepseek+Otter一键转会议记录Deepseek+即梦+tripo3D模型分分钟De
- Python库 - transformers
司南锤
PYTHON库python机器学习python开发语言
transformers库是由HuggingFace开发的一个非常流行的Python库,用于自然语言处理(NLP)任务。它提供了大量的预训练模型,这些模型可以用于各种NLP任务,如文本分类、问答、翻译、摘要生成等。以下是关于transformers库的详细介绍:1.主要特点预训练模型:transformers库包含了多种预训练的语言模型,如BERT、GPT、T5、XLNet等。这些模型在大规模文本
- 【NLP-04】tranformers库保姆级使用教程---以BERT模型为例
云天徽上
NLPbert人工智能深度学习自然语言处理机器学习numpy信息可视化
安装要安装一个非常轻量级的Transformers库,您可以执行以下步骤:1、打开终端或命令提示符。2、运行以下命令来安装Transformers库:pipinstalltransformers这将使用pip工具从PythonPackageIndex(PyPI)下载并安装Transformers库。请确保您的计算机上已经安装了pip。然后,您可以在Python代码中导入Transformers库:
- 一文读懂!深度学习 + PyTorch 的超实用学习路线
a小胡哦
深度学习pythonpytorch
深度学习作为人工智能领域的核心技术,正深刻改变着诸多行业。PyTorch则是深度学习实践中备受青睐的框架,它简单易用且功能强大。下面就为大家详细规划深度学习结合PyTorch的学习路线。一、基础知识储备数学基础数学是很重要的!!!线性代数、概率论与数理统计、微积分是深度学习的数学基石。熟悉矩阵运算、概率分布、梯度计算等概念,能帮助理解深度学习模型的原理。例如,在神经网络中,矩阵乘法用于神经元之间的
- 流行编程语言全解析:优势、应用与短板
a小胡哦
pythonjavac++c语言javascriptswiftr语言
Python:优势Python以其简洁、易读的语法闻名,新手能快速上手。丰富的库和框架,能极大地提高开发效率。适用领域数据科学与分析:处理和分析大规模数据集,进行数据可视化。典型示例:Google用Python进行数据分析,处理海量数据以支持各种业务决策。机器学习与人工智能:构建和训练模型。典型示例:OpenAI在很多人工智能项目中广泛使用Python,如GPT系列模型的研发。网络爬虫:轻松从网页
- Python 用pytorch从头写Transformer源码,一行一解释;机器翻译实例代码;Transformer源码解读与实战
医学小达人
NLPLLMsGPT深度学习人工智能transformerpython机器学习
1.Transformer简介Transformer模型被提出的主要动机是解决序列处理任务的长距离依赖问题。传统的RNN和LSTM虽然能够处理序列任务,但因为它们在处理序列时需要一步步前进,因此其他信息无法立即对其产生影响,当序列变长时,长距离依赖的信息很可能会被丢失。为了解决这个问题,Transformer模型被设计出来,内核思想是利用自注意力机制,这样模型可以直接对输入序列的任意两个位置建立直
- 本地部署DeepSeek + AnythingLLM 搭建高效安全的个人知识库
Chhjnavy
AIDeepSeek大模型本地知识库协同工作
环境准备:本地部署方案请参考博客:windows平台本地部署DeepSeek大模型+OpenWebUI网页界面(可以离线使用)-CSDN博客windows平台本地部署DeepSeek大模型+Chatbox界面(可以离线使用)-CSDN博客根据本人电脑配置:windows11+i9-13900HX+RTX4060+DDR5560032G内存确定搭建方案:DeepSeek-R1:7b+Ollama+A
- csghub安装(docker方式)
AR_xsy
docker容器运维
简单介绍:CSGHub是一个开源、可信的大模型资产管理平台,可帮助用户治理LLM和LLM应用生命周期中涉及到的资产官网部署安装exportSERVER_DOMAIN=$(ipaddrshow$(iprouteshowdefault|awk'/default/{print$5}')|grep'inet'|awk'{print$2}'|cut-d/-f1)exportSERVER_PORT=80doc
- 解锁机器学习核心算法 | 逻辑回归:不是回归的“回归”
紫雾凌寒
AI炼金厂机器学习算法逻辑回归深度学习pythonscikit-learnmatplotlib
引言前面一篇文章我们介绍了机器学习算法中我们最先会接触到的算法——线性回归:机器学习的基石。今天我们继续学习机器学习中的另一个算法模型——逻辑回归(LogisticRegression)。一、逻辑回归:不是回归的“回归”在机器学习的庞大算法体系中,逻辑回归(LogisticRegression)虽然名字中带有“回归”,但却是一位不折不扣的“分类高手”,主要用于解决二分类问题,在众多领域发挥着关键作
- DeepSeek多软件协同效应,产生的王炸组合
Chhjnavy
AI人工智能DeepSeek协同工作
DeepSeek网址:DeepSeek|深度求索1.DeepSeek+Kimi:一键生成高质量PPT,快速制作专业演示文稿Kimi网址:Kimi.ai-会推理解析,能深度思考的AI助手步骤:将PPT内容描述给DeepSeek,产生PPT大纲以及内容;将DeepSeek产生的大纲以及内容,丢到Kimi+模型中,即可自动产生PPT;2.DeepSeek+剪映:生成原创视频,适用于短视频创作剪映网址:剪
- Spring Boot 示例项目:从零开始构建 Web 应用
梦落青云
JAVAspringbootjava
一、项目概述本文档将指导您通过一个示例项目,了解如何使用SpringBoot框架构建一个简单的Web应用程序。该项目涵盖了从数据模型定义到控制器、服务层以及数据访问层的完整开发流程,帮助您快速掌握SpringBoot的基本使用方法。二、项目结构1.项目模块本示例项目分为以下几个主要模块:数据模型模块:负责定义与数据库表对应的实体类,使用JPA注解进行映射。控制器模块:处理客户端的HTTP请求,调用
- 联想E470 双GPU笔记本部署私有AI模型方案
月光技术杂谈
大模型初探人工智能ChatGLM3联想E470Qwen-7BPhi-3-mini
背景:手上有一台联想E470的闲置笔记本,配置如下:(IntelHD620核显+NVIDIA920MX独显,i5-7200UCPU),想用它来部署并学习AI模型。考虑到电脑的性能限制,打算采用「量化模型+知识蒸馏」的低成本部署方案。一、硬件适配优化方案显存限制突破使用4-bit量化技术压缩模型,例如加载ChatGLM3-6B的INT4版本,显存需求可降至6GB310启用CPU-GPU混合推理(通过
- LLM论文笔记 9: Neural Networks and the Chomsky Hierarchy
Zhouqi_Hua
大模型论文阅读论文阅读人工智能深度学习笔记语言模型
Arxiv日期:2022.9.29机构:GoogleDeepMind/Stanford关键词transformer架构原理乔姆斯基体系长度泛化核心结论1.虽然Transformer理论上具有图灵完备性,但在实践中能力受到位置不变性和有限记忆的限制2.Transformer在一些任务中表现较差,例如正则语言任务(如ParityCheck),表明其与Chomsky层级的对齐性不佳3.Transform
- LLaMA系列大模型调研与整理-llama-alpaca-lora
AI大模型-大飞
llamaAI大模型AI职场和发展人工智能
文章目录LLaMA大模型及其衍生模型1.LLaMA2.stanford_alpaca3.ChatDoctor4.alpaca-lora5.Chinese-LLaMA-Alpaca6.BELLE大模型综述ASurveyofLargeLanguageModels关键词:大模型,LLaMA,Alpaca,Lora,Belle,模型训练,模型微调,指令微调最近尝试在领域数据进行生成式大模型的再训练和微调,
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc