#牛牛学算法 之 枚举(1) 完美立方

 

完美立方

形式如 : a^{^{3}} = b^{^{3}} + c^{^{3}} + d^{^{3}}   的等式被称为完美立方等式,例如 : 12^{^{3}} = 6^{^{3}} + 8^{^{3}} + 10^{^{3}}

编写一个程序,对于任给定的的N(N<=100),寻找所有的四元组( a , b , c , d ),使得 

a^{^{3}} = b^{^{3}} + c^{^{3}} + d^{^{3}} 成立 ,其中(1 < b <= c <= d < a ) 。

输入 :

一个正整数N (N <= 100)

输出 :

每行输出一个完美立方

分析 :

1) 枚举也要学会优化 , 通过减少不必要的步骤减少代码运行的时间

2)可以四重循环枚举 a,b,c,d,并且 a 的范围是 [ 2 , N ] , b 的范围 [ 2 , a ] ,c 的范围 [ b , a-1 ], d 的范围 [ c , a-1 ] 。 

代码实现如下 :

c++

#include 

int main() {
    int N;
    std::cin >> N;
    
    for (int a = 2; a <= N; a++) {
        for (int b = 2; b < a; b++) {
            for (int c = b; c < a; c++) {
                for (int d = c; d < a; d++) {
                    if (a * a * a == b * b * b + c * c * c + d * d * d) {
                        std::cout << "Cube = " << a << ", Truple = (" << b << ", " 
                                  << c << ", " << d << ")\n";
                    }
                }
            }
        }
    }
    
    return 0;
}

java

import java.util.Scanner;

public class perfectCube {
    public static void main(String[] args) {
        Scanner input = new Scanner(System.in);

        System.out.println("please input the value of N");
        int N = input.nextInt();

        for (int a = 2; a <= N; a++) {
            for (int b = 2; b < a; b++) {
                for (int c = b; c < a; c++) {
                    for (int d = c; d < a; d++) {
                        if (a * a * a == b * b * b + c * c * c + d * d * d) {
                            System.out.println("Cube = " + a + ", Truple = (" + b + ", "
                                    + c + ", " + d + ")");
                        }
                    }
                }
            }
        }
    }
}

你可能感兴趣的:(算法,算法,java,c++)