图分类,图机器学习最新进展

图分类,图机器学习最新进展

1.Flat_Pooling图分类,图机器学习最新进展_第1张图片

Title Venue Task Code Dataset
DMLAP: Multi-level attention pooling for graph neural networks: Unifying graph representations with multiple localities Neural Networks 2022 1. Graph Classification None synthetic, OGB-molhiv, OGB-ppa, MCF-7 (TU dataset)
GraphTrans: Representing Long-Range Context for Graph Neural Networks with Global Attention NIPS 2021 1. Graph Classification 1.PyTorch NCI1, NCI109, code2, molpcba
GMT: Accurate Learning of Graph Representations with Graph Multiset Pooling. ICLR 2021 1. Graph Classification 2. Graph Reconstruction 3. Graph Generation 1.PyTorch 2.PyTorch-Geometric D&D, PROTEINS, MUTAG, IMDB-B, IMDB-M, COLLAB, OGB-MOLHIV, OGB-Tox21, OGB-ToxCast, OGB-BBBP, ZINC(Reconstruction), QM9(Generation)
QSGCNN: Learning Graph Convolutional Networks based on Quantum Vertex Information Propagation TKDE 2021 1. Graph Classification None MUTAG, PTC, NCI1, PROTEINS, D&D, COLLAB, IMDB-B, IMDB-M, RED-B
DropGNN: DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks NIPS 2021 1. Graph Classification 2. Graph Regression PyTorch MUTAG, PTC, PROTEINS, IMDB-B, IMDB-M QM9(Regression)
SSRead: Learnable Structural Semantic Readout for Graph Classification ICDM 2021 1. Graph Classification PyTorch D&D, MUTAG, Mutagencity, NCI1,PROTEINS, IMDB-B, IMDB-M
FlowPool: Pooling Graph Representations with Wasserstein Gradient Flows ArXiv 2021 1. Graph Classification None BZR, COX2, PROTEINS
DKEPool: Distribution Knowledge Embedding for Graph Pooling TKDE 2022 1. Graph Classification PyTorch IMDB-B, IMDB-M, MUTAG, PTC, NCI1, PROTEINS, REDDIT-BINARY, OGB-MOLHIV, OGB-BBB
FusionPooling: Hybrid Low-order and Higher-order Graph Convolutional Networks Computational Intelligence and Neuroscience 2020 1. Text Classification 2. node classification None 20-Newsgroups // Cora, CiteSeer, PubMed
SOPool: Second-Order Pooling for Graph Neural Networks TPAMI 2020 1. Graph Classification None MUTAG, PTC PROTEINS, NCI1, COLLAB, IMDB-B, IMDB-M, REDDIT-BINARY,REDDIT-MULTI
StructSa: Structured self-attention architecture for graph-level representation learning Pattern Recognition 2020 1. Graph Classification None MUTAG, PTC PROTEINS, NCI1, COLLAB, IMDB-B, IMDB-M, REDDIT-BINARY,REDDIT-MULTI
NAS: Graph Neural Network Architecture Search for Molecular Property Prediction ICBD 2020 1. Graph Regression None QM7, QM8, QM9, ESOL, FreeSolv, Lipophilicity
Neural Pooling for Graph Neural Networks ArXiv 2020 1. Graph Classification None MUTAG, PTC PROTEINS, NCI1, COLLAB, IMDB-B, IMDB-M, REDDIT-BINARY,REDDIT-MULTI-5K
GFN: Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification ArXiv 2019 1. Graph Classification PyTorch MUTAG, PROTEINS, D&D, NCI1, ENZYMES, IMDB-B, IMDB-M, RDT-B. REDDTIT-Multi-5K, REDDIT-Multi-12K, COLLAB
GIN: How Powerful are Graph Neural Networks? ICLR 2019 1. Graph Classification PyTorch MUTAG, PROTEINS, PTC, NCI1, IMDB-B, IMDB-M, RDT-B. RDT-Multi-5K, COLLAB
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective WWW 2019 1. Graph Classification PyTorch Tencent
DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification KDD 2019 1. Graph Classification TensorFlow MUTAG, PTC PROTEINS,ENZYMES
MSNAPool: Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity IJCAI 2019 1. Graph Classification 2. Graph similarity ranking 3. Graph visualization TensorFlow PTC, IMDB-B, WEB, NCI109, REDDIT-Multi-12K
PiNet: Attention Pooling for Graph Classification NIPS-W 2019 1. Graph Classification Code MUTAG, PTC, NCI1, NCI109, PROTEINS, Erdõs-Rényi graphs
DAGCN: Dual Attention Graph Convolutional Networks IJCNN 2019 1. Graph Classification PyTorch NCI1, D&D, ENZYMES, NCI109, PROTEINS, PTC
DeepSet: Universal Readout for Graph Convolutional Neural Networks IJCNN 2019 1. Graph Classification Code MUTAG, PTC, NCI1, PROTEINS,D&D
SortPool: An End-to-End Deep Learning Architecture for Graph Classification AAAI 2018 1. Graph Classification 1.PyTorch-Geometric, 2.Matlab, 3.PyTorch 4.Spektral MUTAG, PTC, NCI1 PROTEINS, D&D
Set2set: Order Matters: Sequence to Sequence for Sets ICLR 2016 - PyTorch-Geometric -
GatedPool: Gated Graph Sequence Neural Networks ICLR 2016 - PyTorch-Geometric -
DCNN: Diffusion-Convolutional Neural Networks NIPS 2016 1. Graph Classification Theano NCI1, NCI109, MUTAG, PCI, ENZYMES

Hierarchical_Pooling - Node_Clustering_Pooling

Title Venue Task Code Dataset
Maximal Independent Vertex Set Applied to Graph Pooling CIKM 2022 1. Graph Classification None PROTEINS, NCI1, D&D, ENZYMES
Higher-order Clustering and Pooling for Graph Neural Networks CIKM 2022 1. Graph Classification 2. Node Clustering 1.PyTorch PROTEINS, NCI1, D&D, MUTAGEN., Reddit-B, Cox2-MD, ER-MD, b-hard // Cora, PubMed, DBLP, Coauthor CS ,Amazon Photo, Amazon PC, Polblogs, Eu-email
Unsupervised Hierarchical Graph Pooling via Substructure-Sensitive Mutual Information Maximization CIKM 2022 1. Graph Classification None MUTAG, PROTEINS, PTC, HIV, IMDB-B, IMDB-M
Structural Entropy Guided Graph Hierarchical Pooling ICML 2022 1. Graph Classification 2. Node Classification 3. Graph Reconstruction 1. PyTorch MUTAG, PROTEINS, D&D, PTC, NCI1,IMDB-B, IMDB-M // Cora, Citeseer, Pubmed // synthetic datasets (grid and circle)
HGCN:Unsupervised Learning of Graph Hierarchical Abstractions with Differentiable Coarsening and Optimal Transport AAAI 2021 1. Graph Classification 1. PyTorch MUTAG, PROTEINS, D&D, NCI109,IMDB-B, IMDB-M
Hierarchical Graph Representation Learning with Local Capsule Pooling MMAsia 2021 1. Graph Classification 2. Graph Reconstruction 1. PyTorch MUTAG, PROTEINS, D&D, PTC, NCI1,IMDB-B, IMDB-M //synthetic datasets (grid and circle)
HGCN:Hierarchical Graph Capsule Network AAAI 2021 1. Graph Classification 1. PyTorch MUTAG, NCI1, PROTEINS, D&D, ENZYMES, PTC, NCI109,IMDB-B, IMDB-M, Reddit-BINARY
HAP: Hierarchical Adaptive Pooling by Capturing High-order Dependency for Graph Representation Learning TKDE 2021 1. Graph Classification 2. Graph Matching 3. Graph Similarity Learning None IMDB-B, IMDB-M, COLLAB, MUTAG, PROTEINS, PTC // synthetic datasets (graph matching) // AIDS, LINUX (graph similarity)
LCP: Hierarchical Graph Representation Learning with Local Capsule Pooling MMAsia 1. Graph Classification 2. Graph Reconstruction None D&D, PROTEINS, IMDB-B, IMDB-M, NCI1, NIC109
MxPool: Multiplex Pooling for Hierarchical Graph Representation Learning ArXiv 2021 1.Graph Classification None D&D, ENZYMES, PROTEINS, NCI109, COLLAB, RDT-MULTI
HIBPool: Structure-Aware Hierarchical Graph Pooling using Information Bottleneck IJCNN 2021 1. Graph Classification 1.PyTorch ENZYMES, DD, PROTEINS, NCI1, NCI109,FRANKENSTEIN
MLC-GCN: Graph convolutional networks with multi-level coarsening for graph classification Knowledge-Based Systems 2020 1.Graph Classification None D&D, ENZYMES, MUTAG, PROTEINS,IMDB-BINARY, IMDB-MULTI, REDDIT- BINARY, REDDIT-MULTI-5K
DGM: Deep Graph Mapper: Seeing Graphs through the Neural Lens NIPS-W 2020 1. Graph Classification 2. Graph Visualisation 1.PyTorch D&D, PROTEINS, COLLAB, REDDIT-B
MuchGNN: Multi-Channel Graph Neural Networks IJCAI 2020 1. Graph Classification None PTC, DD, PROTEINS, COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-MULTI-12K
MinCutPool: Spectral Clustering with Graph Neural Networks for Graph Pooling ICML 2020 1. Graph Classification 2. Graph Regression 1.PyTorch-Geometric, 2.PyTorch D&D, PROTEINS, COLLAB, REDDIT-BINARY, Mutagenicity, QM9(regression)
HaarPool: Haar Graph Pooling ICML 2020 1. Graph Classification 2. Graph Regression 1.PyTorch MUTAG, PROTEINS, NCI1, NCI109, MUTAGEN, TRIANGLES, QM7(regression)
MemPool: Memory-Based Graph Networks ICLR 2020 1. Graph Classification 2. Graph Regression 1.PyTorch-Geometric, 2.PyTorch D&D, PROTEINS, COLLAB, REDDIT-BINARY,ENZYMES ESOL(reg), Lipophilicity(reg)
StructPool: Structured Graph Pooling via Conditional Random Fields ICLR 2020 1.Graph Classification 1. PyTorch ENZYMES, PTC, MUTAG, PROTEINS, COLLAB, IMDB-B, IMDB-M
MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph Representation and Learning ArXiv 2020 1.Graph Classification 2. Graph Regression None D&D, PROTEINS, MUTAG, ENZYMES // QM7 (regression) MUTA-GENICITY
ProxPool: Graph Pooling with Node Proximity for Hierarchical Representation Learning ArXiv 2020 1.Graph Classification None D&D, PROTEINS, NCI1, NCI109, MUTA-GENICITY
CliquePool: Clique pooling for graph classification ICLR-W 2019 1. Graph Classification None D&D PROTEINS, ENZYMES, COLLAB
NMF: A Non-Negative Factorization approach to node pooling in Graph Convolutional Neural Networks AIIA 2019 1. Graph Classification None D&D, PROTEINS, NCI1, ENZYMES, COLLAB
GRAHIES: Multi-Scale Graph Representation Learning with Latent Hierarchical Structure CogMI 2019 1. Node Classification None Cora, CiteSeer, PubMed
EigenPool: Graph Convolutional Networks with EigenPooling KDD 2019 1. Graph Classification 1.PyTorch D&D, PROTEINS, NCI1, NCI109, MUTAG,

参考链接:https://github.com/LiuChuang0059/graph-pooling-papers#flat_pooling
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9460814

你可能感兴趣的:(图分类,图机器学习,图深度学习)