二叉树理论基础
递归三要素:
1. 确定递归函数的参数和返回值;
2. 确定终止条件;
3. 确定单层递归的逻辑。
力扣
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List preorderTraversal(TreeNode root) {
List list = new ArrayList<>();
preOrder(root,list);
return list;
}
public void preOrder(TreeNode node,List res){
if(node==null){
return;
}
res.add(node.val);
preOrder(node.left,res);
preOrder(node.right,res);
}
}
力扣
class Solution {
public List postorderTraversal(TreeNode root) {
List list = new ArrayList<>();
postOrder(root,list);
return list;
}
public void postOrder(TreeNode node, List res){
if(node == null){
return;
}
postOrder(node.left,res);
postOrder(node.right,res);
res.add(node.val);
}
}
力扣
class Solution {
public List inorderTraversal(TreeNode root) {
List list = new ArrayList<>();
inOrder(root,list);
return list;
}
public void inOrder(TreeNode node, List res){
if(node == null){
return;
}
inOrder(node.left,res);
res.add(node.val);
inOrder(node.right,res);
}
}
迭代操作:
【栈】先进后出。
(1)处理:把元素放入result数组中;
(2)访问:遍历节点。
入栈顺序:中-右-左
力扣
class Solution {
public List preorderTraversal(TreeNode root) {
List result = new ArrayList<>();
if(root==null){
return result;
}
Stack stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode node = stack.pop();
result.add(node.val);
if(node.right!=null){
stack.push(node.right);
}
if(node.left!=null){
stack.push(node.left);
}
}
return result;
}
}
入栈顺序:左-右
力扣
class Solution {
public List inorderTraversal(TreeNode root) {
List result = new ArrayList<>();
if(root==null){
return result;
}
Stack stack = new Stack<>();
TreeNode cur = root;
while(cur!=null || !stack.isEmpty()){
if(cur!= null){//cur用以访问节点,至最底层
stack.push(cur);//将访问的节点放进栈
cur = cur.left;//左
} else {
cur = stack.pop();//从栈里弹出的数据,就是要放进result数组的数据
result.add(cur.val);//中
cur = cur.right;//右
}
}
return result;
}
}
入栈顺序:中-左-右;出栈顺序:中-右-左,然后反转result数组 -> 左-右-中。
力扣
class Solution {
public List postorderTraversal(TreeNode root) {
List result = new ArrayList<>();
if(root==null){
return result;
}
Stack stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode node = stack.pop();
result.add(node.val);
if(node.left!=null){
stack.push(node.left);
}
if(node.right!=null){
stack.push(node.right);
}
}
Collections.reverse(result);//反转result数组
return result;
}
}
思想:解决访问节点(遍历节点)和处理节点(将元素放进结果集)不一致的问题。
具体操作:在将访问节点(中节点)放入栈时,把要处理的节点也放入栈,并做标记(放入空指针)。
力扣
遍历顺序:中-左-右
压栈顺序:右-左-中
class Solution {
public List preorderTraversal(TreeNode root) {
List res = new LinkedList<>();
if(root==null) return res;
Stack stack = new Stack<>();
stack.push(root);
while(!stack.empty()){
TreeNode node = stack.peek();
if (node != null) {
stack.pop(); //弹出该节点,避免重复操作;
if (node.right!=null){
stack.push(node.right);//添加右节点
}
if (node.left!=null){
stack.push(node.left);//添加左节点
}
stack.push(node);//添加中节点
stack.push(null); //中节点访问过,但是还没有处理,加入空节点做为标记。
} else {//遇到空节点的时候,将下一个节点放进结果集
stack.pop();//弹出空节点
node = stack.pop();//重新取出栈中元素
res.add(node.val);//加入到结果集
}
}
return res;
}
}
力扣
遍历顺序:左-中-右
压栈顺序:右-中-左
class Solution {
public List inorderTraversal(TreeNode root) {
List res = new ArrayList<>();
if(root==null) return res;
Stack stack = new Stack<>();
stack.add(root);
while(!stack.isEmpty()){
TreeNode node = stack.peek();
if(node!=null){
stack.pop();
if(node.right!=null) stack.push(node.right);
stack.push(node);
stack.push(null);
if(node.left!=null) stack.push(node.left);
}else{
stack.pop();
node = stack.pop();
res.add(node.val);
}
}
return res;
}
}
力扣
遍历顺序:左-右-中
压栈顺序: 中-右-左
class Solution {
public List postorderTraversal(TreeNode root) {
List res = new ArrayList<>();
if(root==null) return res;
Stack stack = new Stack<>();
stack.add(root);
while(!stack.isEmpty()){
TreeNode node = stack.peek();
if(node!=null){
stack.pop();
stack.push(node);
stack.push(null);
if(node.right!=null) stack.push(node.right);
if(node.left!=null) stack.push(node.left);
}else{
stack.pop();
node = stack.pop();
res.add(node.val);
}
}
return res;
}
}