ResNeXt是ResNet的小幅升级,更新了block
左边(ResNet的block/50/101/152层):
对于输入通道为256的特征矩阵,首先使用64个1×1的卷积核进行降维,再通过64个3×3的卷积核处理,再通过256个1×1的卷积核升维输出,将输出与输入进行相加,得到最终的输出。
使用右边的结构替代左边的结构:下面解释。
当分组的个数与输入特征矩阵的channel是一致的,并且输入特征矩阵的channel也和输出特征矩阵的channel一致的话,就相当于对我们输入特征矩阵的每一个channel分配了一个channel为1的卷积核进行卷积。即DW卷积。
(c)(最简形式):输入通道为256维,首先通过128个1×1的卷积核降维处理,再通过group卷积(卷积核3×3,group数为32),得到的特征矩阵的通道是128维,再通过256个1×1的卷积核升维得到输出。再将输出和输入的特征矩阵进行相加得到最终的输出。
(b)和(c)等价:
(a)和(b)等价:
举例:假设path为2,对每个path采用1×1的卷积核来进行卷积
代码是包括ResNet和ResNeXt的
import torch.nn as nn
import torch
# 18层/34层 对应的残差结构(既要有实线残差结构的功能,又要有虚线残差结构的功能)
class BasicBlock(nn.Module):
expansion = 1 #残差结构的主分支卷积核的个数有无发生变化
def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs): # downsample对应残差结构的虚线(shortcut分支)
super(BasicBlock, self).__init__()
# stride=1,对应着实线的残差结构,因为并没有改变输入特征矩阵的高和宽
# output = (input -3 + 2 * 1) / 1 + 1 = input
# stride=2,对应着虚线的残差结构,在第一个卷积层需要将特征矩阵的高和宽缩减为原来的一半
# output = (input -3 + 2 * 1) / 2 + 1 = input / 2 + 0.5 = input / 2 (向下取整)
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
kernel_size=3, stride=stride, padding=1, bias=False) # bias=False,不使用偏置项,因为下面用到BatchNormalization
self.bn1 = nn.BatchNorm2d(out_channel)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channel)
self.downsample = downsample
def forward(self, x):
identity = x # shorcut上的输出值
if self.downsample is not None:
identity = self.downsample(x)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += identity
out = self.relu(out)
return out
# 50层/101层/152层 对应的残差结构
class Bottleneck(nn.Module):
"""
注意:原论文中,在虚线残差结构的主分支上,第一个1x1卷积层的步距是2,第二个3x3卷积层步距是1。
但在pytorch官方实现过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,
这么做的好处是能够在top1上提升大概0.5%的准确率。
可参考Resnet v1.5 https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch
"""
expansion = 4 #每个残差结构的最后一层卷积核的个数都是前两层的4倍
def __init__(self, in_channel, out_channel, stride=1, downsample=None,
groups=1, width_per_group=64):
super(Bottleneck, self).__init__()
width = int(out_channel * (width_per_group / 64.)) * groups
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
kernel_size=1, stride=1, bias=False) # squeeze channels
self.bn1 = nn.BatchNorm2d(width)
# -----------------------------------------
self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
kernel_size=3, stride=stride, bias=False, padding=1)
self.bn2 = nn.BatchNorm2d(width)
# -----------------------------------------
self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion,
kernel_size=1, stride=1, bias=False) # unsqueeze channels
self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
identity = x
if self.downsample is not None:
identity = self.downsample(x)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self,
block, # 对应18/34层或者50/101/152层的残差结构
blocks_num, # 残差结构的个数,是个列表,以34层为例,就是[3,4,6,3]
num_classes=1000, # 训练集的分类个数
include_top=True, # 方便以后在ResNet网络上去搭建更复杂的网络
groups=1,
width_per_group=64):
super(ResNet, self).__init__()
self.include_top = include_top
self.in_channel = 64
self.groups = groups
self.width_per_group = width_per_group
self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
padding=3, bias=False)# 为了让特征矩阵的宽和高缩减为原来的一半,所以这里padding=3
self.bn1 = nn.BatchNorm2d(self.in_channel)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)# 为了让特征矩阵的宽和高缩减为原来的一半,所以这里padding=1
self.layer1 = self._make_layer(block, 64, blocks_num[0]) # conv2_x 对于50/101/152层来说,第一个残差结构的第一层只改变特征矩阵的深度,没有改变宽高,所以没有传入stride,默认为1
self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2) # conv3_x
self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2) # conv4_x
self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2) # conv5_x
if self.include_top:
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # output size = (1, 1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
def _make_layer(self, block, channel, block_num, stride=1):
downsample = None
# 对于18/34层第一个残差结构,跳过这句
if stride != 1 or self.in_channel != channel * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(channel * block.expansion))
layers = []
# 残差结构的第一层(虚线残差结构)
layers.append(block(self.in_channel,
channel,
downsample=downsample,
stride=stride,
groups=self.groups,
width_per_group=self.width_per_group))
self.in_channel = channel * block.expansion
for _ in range(1, block_num):
layers.append(block(self.in_channel,
channel,
groups=self.groups,
width_per_group=self.width_per_group))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
if self.include_top:
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def resnet34(num_classes=1000, include_top=True):
# https://download.pytorch.org/models/resnet34-333f7ec4.pth
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
def resnet50(num_classes=1000, include_top=True):
# https://download.pytorch.org/models/resnet50-19c8e357.pth
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
def resnet101(num_classes=1000, include_top=True):
# https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)
def resnext50_32x4d(num_classes=1000, include_top=True):
# https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
groups = 32
width_per_group = 4
return ResNet(Bottleneck, [3, 4, 6, 3],
num_classes=num_classes,
include_top=include_top,
groups=groups,
width_per_group=width_per_group)
def resnext101_32x8d(num_classes=1000, include_top=True):
# https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth
groups = 32
width_per_group = 8
return ResNet(Bottleneck, [3, 4, 23, 3],
num_classes=num_classes,
include_top=include_top,
groups=groups,
width_per_group=width_per_group)