- 阿里云PAI大模型RAG对话系统最佳实践
阿里云云栖号
云栖号技术分享阿里云云计算云原生ai人工智能
去年4月至9月,阿里云人工智能平台PAI团队与大数据基础工程技术团队合作,构建了基于知识库检索增强的大模型答疑对话机器人,并在阿里云官方答疑链路、研发小蜜、钉钉大数据技术服务助手等多个线上场景上线,显著提升答疑效率。相关文档:【万字长文】基于阿里云PAI搭建知识库向量检索增强的大模型对话系统上线几个月来,随着RAG技术日趋火热,我们保持对线上链路的迭代,不断加入学界业界最新的RAG优化技术(eg:
- 继清华大学DeepSeek资料后,北京大学也出了内容主攻提示词和应用场景
心灵宝贝
deepseek
这份文件是北京大学关于DeepSeek与AIGC应用的内部研讨系列讲座内容,主要介绍了DeepSeek-R1模型的技术特性、应用场景以及AIGC(人工智能生成内容)的概念、应用和未来趋势。以下是文件的主要内容摘要:1.DeepSeek-R1模型详解技术特性:DeepSeek-R1是一款专注于复杂推理任务的推理模型,擅长数学、编程和自然语言推理任务。其低成本、开源策略和卓越的推理能力使其在AIGC领
- 人工智能丨ChatGPT 免费开放网络搜索,能否挑战 Google 的搜索霸主地位?
霍格沃兹测试开发学社测试人社区
人工智能chatgpt
近年来,人工智能的快速发展改变了许多行业,尤其是在信息获取和搜索领域。随着OpenAI推出的ChatGPT系统,它的功能不断增强,而一个重要的新变化是——ChatGPT的网络搜索功能现在对所有用户免费开放。这一变革有可能颠覆Google多年来在搜索引擎领域的统治地位。那么,ChatGPT如何通过这一免费搜索功能重新定义信息搜索方式呢?ChatGPT的网络搜索功能ChatGPT最初是一个文本生成工具
- 【DeepSeek + Chatbox】本地局域网多用户协作全流程!从本地部署到高效交互,深度学习任务这样搞就对了~
磕盐小宋的日常
深度学习人工智能
文章目录『概要』『干货分享』『技术细节』『DeepSeek概述』『工作站配置』『所实现的功能』『具体实现流程』『短板与前瞻』『总结』『概要』最近团队在搞深度学习相关的研究,遇到了个头大的问题:设备依赖太重,每个人都要配备高性能硬件才能跑模型。于是我开始思考,有没有办法让大家共享资源,降低设备要求?经过一番调研和实践,我们终于打通了DeepSeek平台+Chatbox可视化界面的全流程局域网协作方案
- DeepSeek 解决实际问题,提升自己的技术水平和应用能力
2501_90739749
pdf
资源链接:https://pan.quark.cn/s/3d4088555ca0资源链接:https://pan.quark.cn/s/df8ce3ea6f4e「DeepSeek资料大全」资源链接:https://pan.quark.cn/s/1352425b0645「完整版Dee...键整合包」链接:https://pan.quark.cn/s/7e851bca2dc2在人工智能领域风起云涌、技
- 使用YOLOv8训练自己的数据集:详细教程
zru_9602
人工智能YOLO
使用YOLOv8训练自己的数据集:详细教程引言YOLOv8是Ultralytics团队开发的新一代目标检测算法,以其高效的性能和简洁的API而闻名。本文将详细介绍如何使用YOLOv8训练自己的数据集,包括数据准备、模型配置、训练过程以及结果分析。1.环境搭建在开始训练之前,请确保已经安装了必要的依赖项:#安装ultralytics和其他依赖pipinstallultralytics==8.0.25
- 谁说消费级硬件不能玩 DeepSeek - R1 微调?手把手教你进阶AI玩家
硅基创想家
#大模型-DeepSeek系列人工智能DeepSeek大模型微调大模型GPU
微调像DeepSeek-R1这样的大规模人工智能模型可能需要大量资源,但借助正确的工具,在消费级硬件上进行高效训练是可行的。让我们来探索如何使用LoRA(低秩自适应)和Unsloth来优化DeepSeek-R1的微调,实现更快、更具成本效益的训练。一、大规模人工智能模型的微调DeepSeek最新的R1模型在推理性能方面树立了新的标杆,在保持开源的同时,可与专有模型相媲美。DeepSeek-R1的蒸
- Anaconda配置tensorflow-gpu教程
rubisco214
tensorflow人工智能python
最近在入门tensorflow深度学习,配置环境吃了不少苦头,写个完整的教程首先得在自己主机上装cuda(我之前就是主机上没装cuda,只在虚拟环境里面装了,结果jupyter里面怎么调都识别不到GPU)打开Nvidia控制面板,左上角帮助-系统信息-组件NVCUDA64.DLL后面的NVIDIACUDA12.1就是你的显卡支持的CUDA版本,去CUDA官网CUDAToolkitArchive|N
- 一个游戏程序员的学习资料【转载】
Snail -Bernoulli
游戏程序员游戏程序员成长路线
想起写这篇文章是在看侯杰先生的《深入浅出MFC》时,突然觉得自己在大学这几年关于游戏编程方面还算是有些心得,因此写出这篇小文,介绍我眼中的游戏程序员的书单与源代码参考。一则是作为自己今后两年学习目标的备忘录,二来没准对别人也有点参考价值。我的原则是只写自己研究过或准备研究的资料,所以内容无疑会带上强烈的个人喜好色彩,比如对网络,数据库等重要方面完全没有涉及。因为自己主要对三维图形引擎,人工智能算法
- Bedrock Claude Chat: 基于AWS Bedrock和Claude的智能聊天机器人
2401_87458778
aws机器人云计算
BedrockClaudeChat:智能聊天的新选择在人工智能和自然语言处理技术飞速发展的今天,智能聊天机器人正在各行各业得到广泛应用。AWS推出的BedrockClaudeChat项目为开发者提供了一个强大而灵活的聊天机器人解决方案,让构建智能对话系统变得前所未有的简单。项目概述BedrockClaudeChat是一个基于AmazonBedrock平台和Anthropic公司Claude大语言模
- 2001-2022年 上市公司数字赋能指数(TF-IDF)数据:评估企业数字化转型的关键指标
小王毕业啦
大数据tf-idf大数据社科数据人工智能
上市公司数字赋能指数(TF-IDF)数据:评估企业数字化转型的关键指标上市公司数字赋能指数是一个衡量企业利用数字技术提升业务能力和效率的综合性指标。该指数通过量化分析企业在大数据、云计算、人工智能等数字技术应用方面的能力,反映企业数字化转型的深度和广度。获取数据点这里:2001年-2022年上市公司-数字赋能指数(TF-IDF)(Excel+dta)数字赋能指数的重要性数字化转型:推动企业实现数字
- 2025智能系统工程-中国人工智能系列白皮书报告200+份汇总解读|附PDF下载
数据挖掘深度学习人工智能算法
原文链接:https://tecdat.cn/?p=40836在当今科技飞速发展的时代,人工智能正以前所未有的速度渗透到各个行业,深刻改变着人们的生活与工作方式。本报告汇总解读聚焦智能系统工程这一前沿领域,深入剖析其发展现状、关键技术、应用实践及未来趋势。本报告汇总洞察基于文末269份人工智能行业研究报告的数据,报告合集已分享在交流群,阅读原文进群和500+行业人士共同交流和成长。报告首先对智能系
- 全套清华大学DeepSeek教程来袭
2501_90771721
pdf
资源链接:https://pan.quark.cn/s/3d4088555ca0资源链接:https://pan.quark.cn/s/df8ce3ea6f4e「DeepSeek资料大全」资源链接:https://pan.quark.cn/s/1352425b0645「完整版Dee...键整合包」链接:https://pan.quark.cn/s/7e851bca2dc2在当今这个人工智能飞速发展
- 目标检测YOLO实战应用案例100讲-面向无人机图像的小目标检测
林聪木
无人机目标检测人工智能
目录知识储备YOLOv8无人机拍摄视角小目标检测数据集结构环境部署说明安装依赖模型训练权重和指标可视化展示训练YOLOv8PyQt5GUI开发主窗口代码main_window.py使用说明无人机目标跟踪一、目标跟踪的基本原理二、常用的目标跟踪算法基于YOLOv8+图像分割优化关键优化策略(基于VisDrone数据集实验验证)1.模型结构改进2.数据增强策略3.后处理优化4.训练技巧三、性能优化建议
- Python从0到100(六十八):Python OpenCV-图像边缘检测及图像融合
是Dream呀
opencvpython计算机视觉
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- LSTM:解决梯度消失问题
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍在深度学习领域,循环神经网络(RNN)是一种处理序列数据的强大工具。然而,RNN在处理长序列时面临着梯度消失的问题。为了解决这个问题,Hochreiter和Schmidhuber于1997年提出了长短期记忆(LSTM)网络。本文将深入探讨LSTM如何解决梯度消失问题。2.核心概念与联系2.1梯度消失问题在深度神经网络中,梯度消失是一个常见的问题。当网络的层数增加时,反向传播的梯度会随着
- 基于深度学习的SSD口罩识别项目完整资料版(视频教程+课件+源码+数据)
AI方案2025
深度学习人工智能
基于深度学习的SSD口罩识别项目完整资料版,包含视频教程、PPT课件和源码.01项目介绍.mp402SSD算法原理回顾.mp403数据集收集.mp404自定义数据集.mp405生成anchors.mp406展示anchors.mp407计算iou值.mp408计算target.mp409定义模型.mp410模型训练.mp411预测和总结.mp412ssd生成anchor源码编写.mp413计算of
- 55、深度学习-自学之路-自己搭建深度学习框架-16、使用LSTM解决RNN梯度消失和梯度爆炸的问题,重写莎士比亚风格文章。
小宇爱
深度学习-自学之路深度学习rnn人工智能自然语言处理神经网络
importnumpyasnpclassTensor(object):def__init__(self,data,autograd=False,creators=None,creation_op=None,id=None):self.data=np.array(data)self.autograd=autogradself.grad=Noneif(idisNone):self.id=np.rand
- 中国信通院“护证计划”正式启动,合合信息入选首批技术支撑单位
大模型人工智能算法
随着人工智能技术的飞速发展,AI照“骗”在各个行业泛滥成灾,数字图像的真实性面临前所未有的挑战。近日,由中国互联网协会中小企业发展工委会主办的“卓信大数据计划”2025年度会议在京召开。本次会议上,中国信通院、中国互联网协会、中国图象图形学学会以及合合信息、蚂蚁安全实验室等多家企业代表共同启动了以AI守护AI,面向可信证照的专项行动“护证计划”,合合信息成功入选“护证计划”首批技术支撑单位。图说:
- 【Stable Diffusion】AnimatedDiff--AI动画 插件使用技巧分享;文生视频、图生视频、AI生成视频工具;
乘凉~
人工智能应用stablediffusion人工智能音视频
本专栏主要记录人工智能的应用方面的内容,包括chatGPT、DeepSeek、AI绘画等等;在当今AI的热潮下,不学习AI,就要被AI淘汰;所以欢迎小伙伴加入本专栏和我一起探索AI的应用,通过AI来帮助自己提升生产力;本文的目标就是让每一个读者,都能学会并掌握AnimateDiff的使用;成功用它来生成你想要的视频。AnimateDiff是StableDiffusion的一个插件,借助它,你可以实
- 清华大学《DeepSeek与AI幻觉》(无套路免费分享)
xiecoding.cn
人工智能deepseekdeepseek教程deepseek与AI幻觉deepseek清华教程
随着人工智能技术的飞速发展,以DeepSeek为代表的国产大模型正逐渐成为各行各业的重要工具。然而,AI在生成内容时常常会出现“幻觉”——即生成与事实不符、逻辑断裂或脱离上下文的内容。清华大学新闻与传播学院与人工智能学院联合推出的这篇教程《DeepSeek与AI幻觉》,系统性地讲解了AI幻觉的成因、评测方法及应对策略,旨在帮助用户更好地理解和使用AI工具。《DeepSeek与AI幻觉》:https
- 上海第二批49家创新型企业总部名单出炉,合合信息入选
人工智能算法大数据大模型
创新型企业是上海现代化产业体系的重要组成部分,是上海高质量发展的活力所在。近期,上海为新认定的第二批49家创新型企业总部进行授牌,着力为创新型企业在沪发展壮大营造良好环境。此次获授牌的企业总部涵盖集成电路、生物医药、人工智能、数字经济、战新综合等重点产业领域,上海合合信息科技股份有限公司(股票代码:688615.SH)成功入选第二批49家创新型企业总部名单,系人工智能领域获奖企业之一。图说:上海市
- 深入详解人工智能机器学习:强化学习
猿享天开
人工智能基础知识学习人工智能机器学习强化学习
目录强化学习概述强化学习的基本概念定义关键组件强化学习过程常用算法应用示例示例代码代码解释应用场景强化学习核心概念和底层原理核心概念底层原理总结强化学习概述强化学习(ReinforcementLearning,RL)是机器学习中的一个重要领域,其核心目标是通过与环境的交互学习如何采取行动以最大化累积奖励。与监督学习不同的是,强化学习不依赖于给定的输入输出对,而是通过试探和反馈不断改进决策策略。强化
- 2025年,值得关注的LLM大趋势
AI小白熊
人工智能产品经理python开发语言学习ai大模型
随着人工智能技术不断进步,大语言模型正在改变各行各业的运作方式。从代码生成到语言学习应用,GenAI已经渗透到我们日常生活的方方面面。随着像上个月OpenAI的“12天”计划或谷歌的Veo2和Imagen3等新技术的发布,我们看到了快速的创新迭代。面对这些变化,2025年LLM的大趋势值得我们关注。LLM的新兴应用:不仅仅是聊天机器人回想起最初我们用ChatGPT来生成代码或修改文本时,可能没有意
- 构建智慧校园:推动教育现代化的重要路径
智慧校园-合肥自友科技
智慧校园数字化校园智慧校园平台智慧校园智慧校园系统智慧校园平台智慧校园建设智慧校园软件智慧校园方案智慧校园厂商
随着信息技术的飞速发展,智慧校园作为教育领域的新趋势,正逐渐成为推动教育现代化的重要力量。智慧校园不仅是一种物理空间的升级,更是一种教育理念和实践方式的革新。它强调利用大数据、人工智能、物联网等前沿技术,实现教学过程的智能化、个性化与高效化。智慧校园的核心在于智能硬件设施的广泛部署,如智能教室、电子白板、智能图书馆等,这些设备不仅能够提供更为便捷、高效的教与学环境,还能够收集并分析大量数据,为优化
- 自然语言处理入门:从基础概念到实战项目
范范0825
自然语言处理人工智能
自然语言处理入门:从基础概念到实战项目一、引言自然语言处理(NaturalLanguageProcessing,简称NLP)是人工智能的重要分支,旨在让计算机能够理解、生成和处理人类语言。随着大数据和深度学习的发展,NLP技术在文本分类、机器翻译、问答系统、情感分析等领域得到了广泛应用。本文将从NLP的基础概念入手,逐步介绍关键技术,最终通过一个完整的实战项目帮助读者掌握如何在实际应用中使用NLP
- Python深度学习实践:使用TensorFlow构建图像分类器
Evaporator Core
Python开发经验python深度学习tensorflow
摘要随着深度学习技术的飞速发展,图像识别已成为AI领域的热点应用之一。本篇文章将引导读者使用Python和Google的TensorFlow框架,从零开始构建一个简单的图像分类器。我们将深入探讨卷积神经网络(CNN)的基本原理,实现一个能够识别MNIST手写数字的数据集模型,并通过实战代码演示整个过程,最终展示模型的训练与评估。一、环境配置与库导入确保已安装Python3.7+版本,以及Tenso
- 深度学习进阶:构建多层神经网络
孤寂大仙v
深度学习神经网络人工智能
在上一篇文章中,我们从零开始构建了一个简单的两层神经网络,并通过异或问题(XOR)展示了神经网络的强大能力。今天,我们将进一步深入,构建一个更复杂的多层神经网络,并引入更多高级概念,如多隐藏层、激活函数选择、正则化等。我们还会使用更复杂的分类任务来训练模型,并评估其性能。1.多层神经网络的结构在实际应用中,深度学习模型通常包含多个隐藏层,这种结构被称为深度神经网络(DNN)。多层神经网络能够学习更
- 无法启动此程序,因为计算机丢失api-ms-win-core-path-l1-1-0.dll的解决方案
爱编程的喵喵
Python基础课程pythonwindows7api-ms-win-core解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了无法启动此程序,因为计算机丢失api
- Elasticsearch:使用阿里云 AI 服务进行向量化和重新排名
作者:来自ElasticTomásMurúa在本文中,我们将介绍如何将阿里云AI功能与Elasticsearch集成,以提高语义搜索的相关性。阿里云人工智能搜索是一种将高级人工智能功能与Elasticsearch工具相结合的解决方案,利用QwenLLM/DeepSeek-R1系列提供高级推理和分类模型。在本文中,我们将使用同一作者撰写的小说和戏剧的描述来测试阿里巴巴重新排名和稀疏嵌入端点。步骤创建
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象