- Hive数据库及表操作
亦576
hive数据库hadoop
数仓原理以及Hive入门:数仓原理:数仓(DataWarehouse)是用于支持企业决策的数据存储和分析系统。数仓原理包括以下几个方面:1.数据抽取(Extraction):从各个业务系统中抽取数据,并进行清洗和转换,以适应数仓的数据模型。2.数据存储(Storage):将清洗和转换后的数据存储到数仓中,通常使用关系型数据库或大数据存储技术来存储大量的数据。3.数据整合(Integration):
- 自主学习ai 版本0.01
pps-key
人工智能AI写作python算法大数据机器学习
以下是一个简单的自主学习AI示例代码框架,使用Python和在线学习机制实现。这个示例包含基础的数据处理、模型更新和知识存储功能:pythonimportnumpyasnpfromsklearn.linear_modelimportSGDClassifierfromsklearn.feature_extraction.textimportTfidfVectorizerimportpickleimp
- 【论文阅读笔记|EMNLP2023】DemoSG: Demonstration-enhanced Schema-guided Generation for Low-resource Event Ext
Rose sait
论文阅读笔记
论文题目:DemoSG:Demonstration-enhancedSchema-guidedGenerationforLow-resourceEventExtraction论文来源:EMNLP2023论文链接:2023.findings-emnlp.121.pdf(aclanthology.org)代码链接:https://github.com/GangZhao98/DemoSG0摘要当前大多数
- Perl 语言入门学习指南:探索高效脚本编程的奥秘
我的运维人生
简约运维perlPerl编程脚本语言文本处理Perl基础语法
引言Perl,全称PracticalExtractionandReportLanguage,是一种功能强大的编程语言,特别擅长于文本处理、报告生成以及系统自动化管理任务。自1987年诞生以来,Perl凭借其灵活性、强大的内置功能库和广泛的社区支持,在Web开发、生物信息学、网络管理等多个领域发挥着重要作用。本文旨在为初学者提供一份Perl语言入门学习指南,帮助大家快速掌握这门强大的脚本语言。一、P
- 深度学习的一些方向
xinpao
深度学习人工智能
深度学习的一些方向目录深度学习的一些方向一、多模态1.特征提取(featureextraction)2.文本转图像3.可视化问题回答二、计算机视觉1.深度估计(depthestimation)2.图像分类(imageclassification)3.图片分割(ImageSegmentation)4.图像转图像(imagetoimage)5.物体检测(objectdetection)6.视频分类(V
- TfidfVectorizer 和 word2vec
SpiritYzw
sklearnpython机器学习
一、TfidfVectorizer简单使用例子,可以统计子变量的频次类特征fromsklearn.feature_extraction.textimportTfidfVectorizertext_list=['aaa,bbb,ccc,aaa','bbb,aaa,aaa,ccc']vectorizer=TfidfVectorizer(stop_words=[',',':','','.','-'],m
- [未解决]tensorflow_datasets.core.download.download_manager.NonMatchingChecksumError:
爱生活爱自己爱学习
python硕士pythontensorflow
Extractioncompleted...:0file[1:53:39,?file/s]Traceback(mostrecentcalllast):File"E:/github/tf_models/tutorials/image/cifar10/cifar10_train.py",line126,intf.app.run()File"E:\software\Anaconda3\lib\site-
- 机器学习笔记——特征工程、正则化、强化学习
好评笔记
机器学习笔记机器学习人工智能AIAI编程算法工程师
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- 机器学习笔记——特征工程
好评笔记
补档机器学习人工智能论文阅读AIGCtransformer深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- 深度学习论文: Cultivated Land Extraction from High-Resolution Remote Sensing Image
mingo_敏
PaperReadingDeepLearningInstanceSegmentationpython人工智能机器学习
深度学习论文:CultivatedLandExtractionfromHigh-ResolutionRemoteSensingImageTheWinningSolutiontotheiFLYTEKChallenge2021CultivatedLandExtractionfromHigh-ResolutionRemoteSensingImagePDF:https://arxiv.org/pdf/22
- 简述Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch 等模型
科学的发展-只不过是读大自然写的代码
断纱检测caffetensorflowpytorch
以下是对Caffe、TensorFlow、TensorFlowLite、ONNX、DarkNet和PyTorch等模型的简述:Caffe:Caffe(ConvolutionArchitectureForFeatureExtraction)是一个用于特征抽取的卷积框架,它是一个清晰、可读性高且快速的深度学习框架。Caffe由加州伯克利大学的贾扬清开发,起初是一个用于深度卷积网络的Python框架(无
- python命名实体识别工具,斯坦福大学使用NLTK命名实体识别器(NER)功能
宇宙探索未解之迷
python命名实体识别工具
Isthispossible:toget(similarto)StanfordNamedEntityRecognizerfunctionalityusingjustNLTK?Isthereanyexample?Inparticular,IaminterestedinextractionLOCATIONpartoftext.Forexample,fromtextThemeetingwillbehel
- Elevate Your Lead Generation Game with Maps Scraper AI
程序员
RevolutionizingLeadGenerationTransformingLeadAcquisitionMapsScraperAIintroducesagroundbreakingapproachtoleadgenerationbyautomatingtheextractionofvaluabledatafromBingMapslistings.Thisinnovativemappingt
- 推荐算法学习记录2.2——kaggle数据集的动漫电影数据集推荐算法实践——基于内容的推荐算法、协同过滤推荐
萱仔学习自我记录
推荐算法学习pythonmatplotlib开发语言
1、基于内容的推荐:这种方法根据项的相关信息(如描述信息、标签等)和用户对项的操作行为(如评论、收藏、点赞等)来构建推荐算法模型。它可以直接利用物品的内容特征进行推荐,适用于内容较为丰富的场景。#1.基于内容的推荐算法fromsklearn.feature_extraction.textimportTfidfVectorizerfromsklearn.metrics.pairwiseimport
- 【论文阅读】QUEEN: Query Unlearning against Model Extraction(2024)
Bosenya12
科研学习模型窃取论文阅读提取攻击模型安全
摘要Modelextractionattacks(模型提取攻击)currentlyposeanon-negligiblethreat(不可忽视的威胁)tothesecurity(安全性)andprivacy(隐私性)ofdeeplearningmodels.Byqueryingthemodelwithasmalldataset(通过小数据集查询模型)andusingthequeryresultsa
- 机器学习基础(四)——决策树与随机森林
Bayesian小孙
机器学习基础决策树机器学习随机森林
决策树与随机森林文章目录决策树与随机森林一、知识概要(一)二、决策树使用的算法三、sklearn决策树API四、决策树的案例1.数据清洗2.特征工程3.调用决策树API五、集成学习方法-随机森林1.知识概要(二)2.集成学习API3.随机森林的案例importpandasaspdfromsklearn.feature_extractionimportDictVectorizerfromsklear
- 使用SVM进行评论情感分析
github_czy
支持向量机机器学习人工智能
importpandasaspdfromsklearn.model_selectionimporttrain_test_splitfromsklearn.feature_extraction.textimportTfidfVectorizerfromsklearn.svmimportSVCfromsklearn.metricsimportaccuracy_score,precision_score
- 将遍历出的结果字符串装在列表
月夜星空下
fromKeyword_extractionimportThe_original_titleKey_word=[]foriinThe_original_title:fromdtl_nlpimportmax_length_wordsll=max_length_words(i)Key_word.append(ll)keyword_all=Key_wordprint(keyword_all)
- 单词向量化
西域记
1.使用CountVectorizer将文本转化为向量fromsklearn.feature_extraction.textimportCountVectorizervect=CountVectorizer()dialog=['Ihaveaddictedintocybersecurityforyears']vect.fit(dialog)print(vect.vocabulary_)输出结果是一个
- Perl的基本知识
海带土豆
开发语言后端perl
Perl语言,全称为“PracticalExtractionandReportingLanguage”,是一种高级、通用、解释型、动态编程语言,尤其适合文本处理、系统管理和网络编程等任务。Perl的设计理念是让常见任务简单化,复杂任务可能(但仍然可行)。它结合了C、sed、awk、shell脚本等多种语言的特点,并引入了正则表达式的强大功能,因此被誉为“程序员的瑞士军刀”。Perl语言入门学习基础
- 机器学习-特征提取-字典特征提取-文本特征提取-TF-IDF
涓涓自然卷
一、特征提取概要:1、定义:将任意数据(如文本或图像)转换为可用于机器学习的数字特征。注:特征值化是为了计算机更好的去理解数据。2、特征提取分类:字典特征提取(特征离散化)文本特征提取图像特征提取(深度学习介绍)3、特征提取API:sklearn.feature_extraction二、字典特征提取:作用:对字典数据进行特征值化。1、API:fromsklearn.feature_extracti
- 【ChatIE】论文解读:Zero-Shot Information Extraction via Chatting with ChatGPT
Bigcrab__
神经网络Tensorflowchatgpt人工智能深度学习
文章目录介绍ChatIEEntity-RelationTripleExtration(RE)NamedEntityRecognition(NER)EventExtraction(EE)实验结果结论论文:Zero-ShotInformationExtractionviaChattingwithChatGPT作者:XiangWei,XingyuCui,NingCheng,XiaobinWang,Xin
- 【WWW2020】需要读的论文
三年三年又三年
论文研读
ConferenceURL:https://www2020.thewebconf.org/全部论文下载链接:https://dl.acm.org/doi/proceedings/10.1145/3366423BestPaperPaperTitle:OpenIntentExtractionfromNaturalLanguageInteractionsAuthors:NikhitaVedula(The
- 【COMP337 LEC1】
WINNER505
机器学习人工智能
DataPreprocessingPhase数据预处理1.Featureextraction特征提取1.Anobjectisdescribedbyacollectionofattributes一个对象可以由一组特征来描述2.Afeatureisapropertyoracharacteristicofanobjects物体的属性2.Datacleaning数据清洗Extracteddatamayha
- 论文笔记:相似感知的多模态假新闻检测
图学习的小张
论文笔记论文阅读python
整理了RecSys2020ProgressiveLayeredExtraction:ANovelMulti-TaskLearningModelforPersonalizedRecommendations)论文的阅读笔记背景模型实验论文地址:SAFE背景 在此之前,对利用新闻文章中文本信息和视觉信息之间的关系(相似性)的关注较少。这种相似性有助于识别虚假新闻,例如,虚假新闻也许会试图使用不相关的图
- 【论文解读】Document-Level Relation Extraction with Adaptive Focal Loss and Knowledge Distillation
Queen_sy
深度学习人工智能
目录1Introduction1Docre任务比句子级任务更具挑战性:2现有的Docre方法:3现有的Docre方法存在三个局限性2Methodology1使用轴向注意力模块作为特征提取器:2第二,提出适应性焦距损失3第三用知识蒸馏相关知识类别不平衡问题长尾类分布交叉熵损失和二元交叉熵损失二元交叉熵损失定义为知识蒸馏全文翻译https://baijiahao.baidu.com/s?id=1737
- matlab lina全图,lina - MATLAB Central
午餐时间到了
matlablina全图
QuestionFuzzyColorFeatureExtractionCouldanyonegivemeasamplehowtoimplementfuzzymethodinMatlabtoextractthecolorfromanimage(letsayIwanttoextr...5yearsago|0answers|00answersQuestionHowtocalculatethepropor
- 特征工程:特征提取、特征预处理、特征选择
xiaobai_IT_learn
人工智能python特征工程特征提取特征预处理特征选择
一、特征提取1.字典特征提取sklearn.feature_extraction.DictVectorizer(sparse=True,…)dict=DictVectorizer(sparse=False)data=dict.fit_transform([{'city':'北京','temperature':100},{'city':'上海','temperature':60},{'city':'
- 2、卷积和ReLU激活函数
AI算法蒋同学
计算机视觉计算机视觉人工智能
python了解集合网络如何创建具有卷积层的特性。文章目录简介特征提取(FeatureExtraction)卷积过滤(FilterwithConvolution)Weights(权重)激活(Activations)用ReLU检测示例-应用卷积和ReLU结论In[1]:importnumpyasnpfromitertoolsimportproductdefshow_kernel(kernel,lab
- UniCOQE: Unified Comparative Opinion Quintuple Extraction as A Set
iKang_dlut
自然语言处理
作者:ZinongYang,FengXu,JianfeiYu,andRuiXia单位:SchoolofcomputerscienceandengineeringNanjingUniversityofScienceandTechnolog,Nanjing,ChinaSchoolofAccountancyNanjingUniversityofFinanceandEconomics,China1{zny
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,