- Cell Insight | 单细胞测序技术又一新发现,可用于HIV-1和Mtb共感染个体诊断
尐尐呅
结核病是艾滋病合并其他疾病中导致患者死亡的主要原因。其中结核病由结核分枝杆菌(Mycobacteriumtuberculosis,Mtb)感染引起,获得性免疫缺陷综合症(艾滋病)由人免疫缺陷病毒(Humanimmunodeficiencyvirustype1,HIV-1)感染引起。国家感染性疾病临床医学研究中心/深圳市第三人民医院张国良团队携手深圳华大生命科学研究院吴靓团队,共同研究得出单细胞测序
- 高通量测序的数据处理与分析指北(二)--宏基因组篇
lantary
博客原文宏基因组篇前言之前的一篇文章已经从生物实验的角度讲述了高通量测序的原理,这篇文章旨在介绍宏基因组二代测序数据的处理方式及其原理。在正文开始之前,我们先来认识一下什么是宏基因组。以我的理解,宏基因组就是某环境中所有生物的基因组的合集,这个环境可以是下水道,河流等自然环境,也可以是人体内肠道,口腔等体环境。而宏基因组中的生物往往指的是微生物,如真菌,细菌,病毒,古细菌。我们这里主要以肠道微生物
- 2022-04-17
图灵基因
NatBiotech|组织中单细胞转录组的空间图谱原创图灵基因图灵基因2022-04-1707:03收录于话题#前沿生物大数据分析单细胞RNA测序(scRNA-seq)已经彻底改变了单细胞水平上的基因表达研究。最近,空间技术通过添加空间信息将转录组学提升到了一个新的水平。但是,它缺乏单细胞分辨率。现在,来自德克萨斯大学MD安德森癌症中心的一个小组开发了一种名为CellTrek的计算方法,将这两个数
- 生信人应该这样来装软件(未完待续)
dandanwu90
P1优先选择二进制可执行软件来安装不同组学任务模块比对重要全基因组测序/外显子测序找差异和变异转录组相关计数软件安装规律:二进制,下载解压,全路径调用#C语言查看在还是不在whichmakewhichcmakewhichjavawhichperlwhichpython#查看版本python--versionperl--version查看版本,版本问题导致错误如何判断所有软件是否是二进制,进入软件官
- 2020-01-28
ab96a7f92f71
中西医对病毒性肺病诊治差别(浅析1)ab96a7f92f71字数289·阅读02020-01-2814:05西医除了追溯疾病症状与体征之外,更多借助于各种化验、检测手段和影像学,尤其是血常规和胸部高清CT影像加以诊断,还必须做咽拭子或下呼吸道分泌物寻找出病原体,例如有针对病毒核酸检测或培养测序和抗体滴度测试等。当然还进行全面身体测试数据发现以往的基础病或体质状态。中医主要运用望闻问切传统手段来辨别
- 7+纯生信,单细胞识别细胞marker+100种机器学习组合建模,机器学习组合建模取代单独lasso回归势在必行!
生信小课堂
影响因子:7.3研究概述:皮肤黑色素瘤(SKCM)是所有皮肤恶性肿瘤中最具侵袭性的类型。本研究从GEO数据库下载单细胞RNA测序(scRNA-seq)数据集,根据原始研究中定义的细胞标记重新注释各种免疫细胞,以确定其特异性标志。接着通过计算免疫细胞通信网络,结合对通信网络的大量分析和通信模式的识别,对所有网络进行了定量表征和比较。最后基于bulkRNA测序数据,使用机器学习训练了枢纽通讯细胞的特定
- scRNA-data中的R值
武艺晴小朋友你好
r语言数据可视化
愿武艺晴小朋友一定得每天都开心当我们测序拿得到各个样本中基因的表达值,就可以用基因表达值来表征样本间的相关性代码如下:#样本间相似性:R值相关性捕获到的基因在两个样本间表达趋势一致性exp_RNA1000)head(label)ggPoint(x=df$fed,y=df$memory_66d,size=1,title="r=0.41",colorDensity=TRUE,continuousSet
- 单细胞DNA测序方法比较及应用
6102
Lorenz曲线:越接近对角线,测序覆盖越均一Bulk大量细胞测序MDA直接使用DNA聚合酶Phi29扩增均一度:Bulk>MALBAC>MDA3种方法测肿瘤细胞CNV:横轴-染色体序列;纵轴-测序的覆盖深度fig.ABC:MALBAC法还算能看清拷贝数变异fig.D:Bulk法看拷贝数变异很直接清晰fig.E:MDA法拷贝数变异的信息较模糊生殖健康方面的一个应用染色体平衡易位,常见于习惯性流产家
- Trimmomatic 数据过滤
生信编程日常
Trimmomatic是一个很常用的Illumina平台数据过滤工具。支持SE和PE测序数据。主要用来去除Illumina平台的fastq序列中的接头,并根据碱基质量值对fastq进行修剪。用法:Trimmomatic=~/biotools/Trimmomatic-0.36/trimmomatic-0.36.jaradapter=~/biotools/Trimmomatic-0.36/adapte
- Signac::EnhanceCoveragePlot 参考实现流程
倪桦
r语言Signaccoverageplot
Signac中的CoveragePlot是一种用于展示基因组覆盖度的图形工具,常用于ATAC-seq(AssayforTransposase-AccessibleChromatinusingsequencing)数据分析。它显示了特定基因组区域内测序读取的覆盖度,即每个位置上读取的频率。覆盖度图形对于理解基因组的开放区域、调控元件活性以及染色质状态等方面具有重要作用。通过将多个样本的Coverag
- 2022-01-14
Tree_microbiome
Tree_microbiome的博客_CSDN博客-微生物组测序数据可视化,微生物组测序分析领域博主(一)不同分类水平注释结果相对丰富度转化在微生物组测序中我们会从taxa_bar.qvz文件中下载到不同水平(level1,level2,level3……)的注释结果,一般我们用这些不同注释结果做微生物组的组成的堆积图,但是这些并不是相对丰富度,因此我们需要对其进行转换。以level-6属水平注释结
- 解惑深度学习中的困惑度Perplexity
Axlsss
深度学习统计知识深度学习人工智能数学建模
困惑度的定义困惑度(Perplexity)是衡量语言模型好坏的一个常用指标。语言模型(languagemodel)可以预测序列(比如一个句子)中每个时间步词元(比如一个句子中的逐个单词)的概率分布,继而计算一个序列的概率。一个好的语言模型应该有更高的概率生成一个好的序列,即生成的序列不应该让人感到很困惑,困惑度的核心思想是:序列生成的概率越大,其困惑度越小,因此可以使用困惑度这个指标来评估语言模型
- 使用clusterProfiler进行GO、KEGG富集分析(有参情况)
纪伟讲测序
寻找差异表达的基因并识别它们的功能,是我们进行RNA测序的最主要目的。很明显,这些差异的基因必然与功能改变密切相关,例如,比较患病个体与正常个体的组织表达谱,不难想到这些显著失调的基因参与了生物学过程、信号通路等,导致了疾病的发生。前面已经讲了如何使用DESeq2、edgeR基于转录组测序获得的基因表达值鉴定差异表达基因。那么,后续如何继续通过生信分析的方法,探索差异表达的基因发挥了怎样的功能,参
- 论文阅读瞎记(四) Cascade R-CNN: Delving into High Quality Object Detection 2017
码大哥
深度学习人工智能
概述在物体检测中1,IOU阈值被用于判定正负样本。在低IOU阈值比如0.5的状态下训练模型经常产生噪音预测,然而检测效果会随着IOU增加而降低。两个主要因素:1.训练时的过拟合,正样本指数消失2.检测器最优IOU与输入假设的不匹配。一个单阶段的物体检测器CascadeR-CNN被提出用于解决这些问题。网络由一个检测序列组成,这些序列训练时会伴随IOU增长从而对FP样本更加有选择性地判别。检测器一个
- 肿瘤免疫微环境/免疫浸润分析
期待未来
肿瘤免疫微环境/免疫浸润1.概念:肿瘤及微环境肿瘤细胞肿瘤微环境基质细胞成纤维细胞免疫细胞:B细胞、T细胞等肿瘤免疫微环境:就是肿瘤的内部和周围往往聚集着大量的免疫细胞。这些免疫细胞与肿瘤细胞存在复杂相互作用和调节。免疫微环境或免疫浸润分析:本质上,就是搞清楚肿瘤组织当中免疫细胞的构成比例。2.计算免疫微环境的常用方法:“实测法”,高精度的单细胞测序,SinglecellRNA-seq等手段。即一
- python调用statsmodels模块实现整合移动平均自回归模型(ARIMA)——以预测股票收盘价为例.md
爆米LiuChen
python回归开发语言
文章目录程序简介程序/数据集下载代码分析程序简介调用statsmodels模块对上证指数的收盘价进行ARIMA模型动态建模,ARIMA适合短期预测,因此输入为15个数据,输出为1个数据程序输入:原序列,需要往后预测的个数程序输出:预测序列,模型结构(白噪声检验、单根检验、一阶差分自相关图、一阶差分偏自相关图)差分整合移动平均自回归模型(ARIMA),ARIMA(p,d,q)中,AR是”自回归”,p
- 【好书分享第十期】大模型应用解决方案_基于ChatGPT和GPT-4等Transformer架构的自然语言处理(文末送书)
屿小夏
书籍推荐chatgpttransformer架构大模型AI
文章目录前言一、内容简介二、作者简介三、目录四、摘录粉丝福利前言在不到4年的时间里,Transformer模型以其强大的性能和创新的思想,迅速在NLP社区崭露头角,打破了过去30年的记录。BERT、T5和GPT等模型现在已成为计算机视觉、语音识别、翻译、蛋白质测序、编码等各个领域中新应用的基础构件。因此,斯坦福大学最近提出了“基础模型”这个术语,用于定义基于巨型预训练Transformer的一系列
- 科研盘点丨空间转录组技术在肝脏研究中的应用
晶典教你玩转科研
哺乳动物的肝脏是维持代谢稳态及解毒的重要器官,单细胞RNA测序技术可以鉴定到大多数肝细胞类型,但如何获取细胞类型在组织上的定位及其基因表达情况,并研究细胞间相互作用及通讯对于增强我们对肝脏发育及疾病发生、发展机制的了解至关重要。10x空间转录组技术结合显微成像、靶向探针捕获、芯片、测序技术,从一片完整的冰冻组织切片或石蜡组织切片中获取切片不同位置细胞中转录组数据,并将组织学和基因表达分析相结合。接
- 《当人工智能牵手新兴技术:安全挑战与应对之策》
程序猿阿伟
人工智能安全
在科技日新月异的今天,人工智能的发展势头迅猛,而当它与其他新兴技术如生物技术、纳米技术等相结合时,一场前所未有的科技革命似乎正在悄然酝酿。然而,这种融合也带来了一系列新的安全挑战,值得我们深入探讨和警惕。一、人工智能与生物技术结合的安全挑战1.生物数据安全风险人工智能在生物技术领域的应用,如基因测序和分析,产生了大量的生物数据。这些数据包含着个人的遗传信息,一旦泄露,可能被用于非法目的,如遗传歧视
- 如何处理NGS数据中的污染?
lakeseafly
本次文章和大家讨论一个大家可能胡遇到很常见的一个问题,在测序中我们很难避免引入一些微生物污染或者人类的污染,例如,我想测序拟南芥,其中由于实验员的操作不够干净,很容易引入一些人类的DNA,又或者该拟南芥的叶子上也混杂着细菌真菌等其他的DNA。当你进行组装或者做一些后续分析,这些污染会造成一些可想不到的不良影响。这篇文章会和大家讨论一下,处理NGS数据中的微生物污染?清理原始数据显而易见的,在一开始
- 隐马尔可夫模型(HMM) |前向算法 |一个简单的例子说清计算过程 |一般步骤总结
漂亮_大男孩
算法隐马尔可夫模型
如是我闻:本文通过一个简单的例子来详细说明隐马尔可夫模型(HMM)的前向算法我们求解的问题类型是:给定模型及观测序列计算其出现的概率。隐马尔可夫模型由三个主要部分组成:隐藏状态集合观测状态集合以及三个概率矩阵(状态转移概率矩阵、观测概率矩阵、和初始状态概率向量)1.示例说明假设有一个简化的天气模型,其中隐藏状态是“晴朗”(Sunny)和“雨天”(Rainy),观测状态是“干燥”(Dry)和“湿润”
- 高通量测序的数据处理与分析(二)-宏基因组2
lantary
博客原文宏基因组数据处理方法数据下载wget下载宏基因组的数据主要分布在两个数据库:1.NCBI的SRA数据库,2.ENA。近年来也有许多研究者将数据上传到中国的数据库:NGDC你可以直接通过网页下载数据,或者是通过各个网站提供的下载工具进行批量下载。也可以到sra-exporter这个网站上输入项目号获得样本的下载链接。用wget或者其他下载工具进行下载,示例的命令如下:wget-cftp://
- 扩增子质控流程多,专属名词来揭晓
ee00dc6faab7
在高通量测序王国中,Rawreads(或rawdata)已不陌生,但在扩增子测序的质控数据中还有Rawtags、Cleantags、Effectivetags等一串的专属名词,这些名词代表什么,分析要关注哪些数据,测序数据量要选择多少可以满足需求呢,带着这些疑问,我们将为您一一揭晓:首先简单说下扩增子的实验过程,与其他产品区别就是增加了扩增环节,扩增是依据测序仪器的读长和目标序列,设计特异引物对基
- 生信工具 | 测序数据质控与过滤 - fqtrim
程序员
fqtrimtrimming&filteringofnext-genreadsfqtrim是一个多功能的独立实用程序,可用于去除高通量测序仪产出的测序数据接头,poly-A尾,末端未知碱基(Ns)和低质量3'区域。该程序允许接头序列和poly-A序列的不精确匹配(从而考虑到由测序错误导致的错配和插入/缺失)。此工具还可以对reads应用低复杂性(“dust”)过滤器,或计数并折叠重复reads,这
- 转录组结果和qRT-PCR结果又不一致?!
Seurat_
什么?!按照转录组筛选的5个最明显的差异基因只有2个与qRT-PCR结果一致?转录组测序(RNA-seq)将细胞内某一类型(或全部)的RNA逆转录成DNA,通过高通量测序的方法测定其序列并统计其表达水平的一项技术。是检测基因表达变化的通用方法。qRT-PCR是指通过对PCR扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。RNA-seq无需知道实验样本的基因组序列含比传
- 二代测序原理(Illumina)
白墨石
虽然三代测序现在已经商用,但是目前的主流还是二代测序,尤其是Illumina公司的测序方式更是大行其道。那么,下面我们从四个方面来说说illumina家的二代测序是怎么得到的生物数据。0、基本原理基于可逆终止的,荧光标记dNTP,做边合成边测序分为三步:样本准备SamplePrep成簇ClusterGeneration测序Sequencing数据分析DataAnalysis1、样本准备Sample
- 【动植物研究动态】20220501文献解读
生物信息与育种
NG|农科院油料所伍晓明&诺禾:揭示现代油菜遗传改良的基因组学基础Genomicselectionandgeneticarchitectureofagronomictraitsduringmodernrapeseedbreeding基于418份现代油菜种质高深度重测序数据,解析了油菜育种过程中农艺性状的基因组选择和遗传结构,研究结果破解了油菜产量提升的基因奥秘,奠定了油菜持续增产的理论基础。揭示了
- 一文带你了解单细胞数据基因集打分的所有算法
生信宝库
上一周Immugent写了一篇一文解决单细胞亚群注释的所有问题,引出了单细胞测序技术的面临的几大未解决的技术难题,其中最主要的一个问题就是由于测序深度不足产生的"dropout"现象。这使得很多情况下所见非所得,傻傻分不清有些基因表达量很低,是因为没有测到还是本身没有表达。对于这种现象很多研究者给出了自己的解决方法,其中最主要的一大类就是通过对包含多个基因的基因集综合打分来评估细胞的某一项功能,比
- 机器学习---HMM前向、后向和维特比算法的计算
三月七꧁ ꧂
机器学习机器学习算法python
1.HMMimportnumpyasnp#In[15]:classHiddenMarkov:defforward(self,Q,V,A,B,O,PI):#使用前向算法N=len(Q)#状态序列的大小M=len(O)#观测序列的大小alphas=np.zeros((N,M))#alpha值T=M#有几个时刻,有几个观测序列,就有几个时刻fortinrange(T):#遍历每一时刻,算出alpha值i
- 两则脐带血相关文献
MC学公卫
[精读]一篇单细胞转录组测序分析的文章:Single-cellTranscriptomicLandscapeofNucleatedCellsinUmbilicalCordBlood[泛读]一篇生统分析脐带血的血常规数据的文章:Acomprehensivestudyofumbilicalcordbloodcelldevelopmentalchangesandreferencerangesbygest
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不