【Apollo学习笔记】——规划模块TASK之PATH_DECIDER

文章目录

  • 前言
  • PATH_DECIDER功能简介
  • PATH_DECIDER相关配置
  • PATH_DECIDER总体流程
    • 路径决策代码流程及框架
    • MakeStaticObstacleDecision
  • PATH_DECIDER相关子函数
  • 参考

前言

在Apollo星火计划学习笔记——Apollo路径规划算法原理与实践与【Apollo学习笔记】——Planning模块讲到……Stage::Process的PlanOnReferenceLine函数会依次调用task_list中的TASK,本文将会继续以LaneFollow为例依次介绍其中的TASK部分究竟做了哪些工作。由于个人能力所限,文章可能有纰漏的地方,还请批评斧正。

modules/planning/conf/scenario/lane_follow_config.pb.txt配置文件中,我们可以看到LaneFollow所需要执行的所有task。

stage_config: {
  stage_type: LANE_FOLLOW_DEFAULT_STAGE
  enabled: true
  task_type: LANE_CHANGE_DECIDER
  task_type: PATH_REUSE_DECIDER
  task_type: PATH_LANE_BORROW_DECIDER
  task_type: PATH_BOUNDS_DECIDER
  task_type: PIECEWISE_JERK_PATH_OPTIMIZER
  task_type: PATH_ASSESSMENT_DECIDER
  task_type: PATH_DECIDER
  task_type: RULE_BASED_STOP_DECIDER
  task_type: SPEED_BOUNDS_PRIORI_DECIDER
  task_type: SPEED_HEURISTIC_OPTIMIZER
  task_type: SPEED_DECIDER
  task_type: SPEED_BOUNDS_FINAL_DECIDER
  task_type: PIECEWISE_JERK_SPEED_OPTIMIZER
  # task_type: PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER
  task_type: RSS_DECIDER

本文将继续介绍LaneFollow的第7个TASK——PATH_DECIDER

PATH_DECIDER功能简介

根据选出的路径给出对障碍物的决策

【Apollo学习笔记】——规划模块TASK之PATH_DECIDER_第1张图片若是绕行的路径,则产生绕行的决策;若前方有障碍物阻塞,则产生停止的决策。

PATH_DECIDER相关配置

modules/planning/conf/planning_config.pb.txt

default_task_config: {
  task_type: PATH_DECIDER
  path_decider_config{
    static_obstacle_buffer: 0.3
  }
}

modules/planning/proto/task_config.proto

//
// PathDeciderConfig

message PathDeciderConfig {
  // buffer for static obstacles (meter)
  optional double static_obstacle_buffer = 1 [default = 0.3];
}

PATH_DECIDER总体流程

输入:

Status PathDecider::Process(const ReferenceLineInfo *reference_line_info,
                            const PathData &path_data,
                            PathDecision *const path_decision) {

输出:
路径决策的信息都保存到了path_decision中。

路径决策代码流程及框架

【Apollo学习笔记】——规划模块TASK之PATH_DECIDER_第2张图片
Process函数主要功能是调用了MakeObjectDecision函数。而在MakeObjectDecision函数中调用了MakeStaticObstacleDecision函数。

路径决策的主要功能都在MakeStaticObstacleDecision中。这部分代码还是比较清晰的。

Status PathDecider::Process(const ReferenceLineInfo *reference_line_info,
                            const PathData &path_data,
                            PathDecision *const path_decision) {
  // skip path_decider if reused path
  if (FLAGS_enable_skip_path_tasks && reference_line_info->path_reusable()) {
    return Status::OK();
  }

  std::string blocking_obstacle_id;
  if (reference_line_info->GetBlockingObstacle() != nullptr) {
    blocking_obstacle_id = reference_line_info->GetBlockingObstacle()->Id();
  }
  // 调用MakeObjectDecision函数
  if (!MakeObjectDecision(path_data, blocking_obstacle_id, path_decision)) {
    const std::string msg = "Failed to make decision based on tunnel";
    AERROR << msg;
    return Status(ErrorCode::PLANNING_ERROR, msg);
  }
  return Status::OK();
}

bool PathDecider::MakeObjectDecision(const PathData &path_data,
                                     const std::string &blocking_obstacle_id,
                                     PathDecision *const path_decision) {
  // path decider的主要功能在MakeStaticObstacleDecision中
  if (!MakeStaticObstacleDecision(path_data, blocking_obstacle_id,
                                  path_decision)) {
    AERROR << "Failed to make decisions for static obstacles";
    return false;
  }
  return true;
}

MakeStaticObstacleDecision

获取frenet坐标系下的坐标

  ... ...
  // 1.获取frenet坐标下的path路径
  const auto &frenet_path = path_data.frenet_frame_path();
  if (frenet_path.empty()) {
    AERROR << "Path is empty.";
    return false;
  }
  ... ...

根据障碍物做决策

  ... ...
  // 2.遍历每个障碍物,做决策
  for (const auto *obstacle : path_decision->obstacles().Items()) {
    const std::string &obstacle_id = obstacle->Id();
    const std::string obstacle_type_name =
        PerceptionObstacle_Type_Name(obstacle->Perception().type());
    ADEBUG << "obstacle_id[<< " << obstacle_id << "] type["
           << obstacle_type_name << "]";
    ... ...

如果障碍物不是静态或virtual,则跳过

    // 2.1 如果障碍物不是静态的或者是virtual的,就跳过
    if (!obstacle->IsStatic() || obstacle->IsVirtual()) {    // (stop fence,各种fence)
      continue;
    }

如果障碍物有了ignore/stop决策,则跳过

    // 2.2 如果障碍物已经有 ignore/stop 决策,就跳过
    if (obstacle->HasLongitudinalDecision() &&
        obstacle->LongitudinalDecision().has_ignore() &&
        obstacle->HasLateralDecision() &&
        obstacle->LateralDecision().has_ignore()) {
      continue;
    }
    if (obstacle->HasLongitudinalDecision() &&
        obstacle->LongitudinalDecision().has_stop()) {
      // STOP decision
      continue;
    }

如果障碍物挡住了路径,加stop决策

    // 2.3 如果障碍物挡住了路径,加stop决策
    if (obstacle->Id() == blocking_obstacle_id &&
        !injector_->planning_context()
             ->planning_status()
             .path_decider()
             .is_in_path_lane_borrow_scenario()) {
      // Add stop decision
      ADEBUG << "Blocking obstacle = " << blocking_obstacle_id;
      ObjectDecisionType object_decision;
      *object_decision.mutable_stop() = GenerateObjectStopDecision(*obstacle);
      path_decision->AddLongitudinalDecision("PathDecider/blocking_obstacle",
                                             obstacle->Id(), object_decision);
      continue;
    }

如果是clear-zone,跳过

    // 2.4 如果是clear-zone,跳过
    if (obstacle->reference_line_st_boundary().boundary_type() ==
        STBoundary::BoundaryType::KEEP_CLEAR) {
      continue;
    }

如果障碍物不在路径上,跳过

    // 2.5 如果障碍物不在路径上,跳过
    ObjectDecisionType object_decision;
    object_decision.mutable_ignore();
    const auto &sl_boundary = obstacle->PerceptionSLBoundary();
    if (sl_boundary.end_s() < frenet_path.front().s() ||
        sl_boundary.start_s() > frenet_path.back().s()) {
      path_decision->AddLongitudinalDecision("PathDecider/not-in-s",
                                             obstacle->Id(), object_decision);
      path_decision->AddLateralDecision("PathDecider/not-in-s", obstacle->Id(),
                                        object_decision);
      continue;
    }

nudge判断

  • 如果距离静态障碍物距离太远,则忽略。
  • 如果静态障碍物距离车道中心太近,则停止。
  • 如果横向方向很近,则避开。
    // 2.6 nudge判断,如果距离静态障碍物距离太远,则忽略。
    //               如果静态障碍物距离车道中心太近,则停止。
    //               如果横向方向很近,则避开。
    if (curr_l - lateral_radius > sl_boundary.end_l() ||
        curr_l + lateral_radius < sl_boundary.start_l()) {
      // 1. IGNORE if laterally too far away.
      path_decision->AddLateralDecision("PathDecider/not-in-l", obstacle->Id(),
                                        object_decision);
    } else if (sl_boundary.end_l() >= curr_l - min_nudge_l &&
               sl_boundary.start_l() <= curr_l + min_nudge_l) {
      // 2. STOP if laterally too overlapping.
      *object_decision.mutable_stop() = GenerateObjectStopDecision(*obstacle);

      if (path_decision->MergeWithMainStop(
              object_decision.stop(), obstacle->Id(),
              reference_line_info_->reference_line(),
              reference_line_info_->AdcSlBoundary())) {
        path_decision->AddLongitudinalDecision("PathDecider/nearest-stop",
                                               obstacle->Id(), object_decision);
      } else {
        ObjectDecisionType object_decision;
        object_decision.mutable_ignore();
        path_decision->AddLongitudinalDecision("PathDecider/not-nearest-stop",
                                               obstacle->Id(), object_decision);
      }
    } else {
      // 3. NUDGE if laterally very close.
      if (sl_boundary.end_l() < curr_l - min_nudge_l) {  // &&
        // sl_boundary.end_l() > curr_l - min_nudge_l - 0.3) {
        // LEFT_NUDGE
        ObjectNudge *object_nudge_ptr = object_decision.mutable_nudge();
        object_nudge_ptr->set_type(ObjectNudge::LEFT_NUDGE);
        object_nudge_ptr->set_distance_l(
            config_.path_decider_config().static_obstacle_buffer());
        path_decision->AddLateralDecision("PathDecider/left-nudge",
                                          obstacle->Id(), object_decision);
      } else if (sl_boundary.start_l() > curr_l + min_nudge_l) {  // &&
        // sl_boundary.start_l() < curr_l + min_nudge_l + 0.3) {
        // RIGHT_NUDGE
        ObjectNudge *object_nudge_ptr = object_decision.mutable_nudge();
        object_nudge_ptr->set_type(ObjectNudge::RIGHT_NUDGE);
        object_nudge_ptr->set_distance_l(
            -config_.path_decider_config().static_obstacle_buffer());
        path_decision->AddLateralDecision("PathDecider/right-nudge",
                                          obstacle->Id(), object_decision);
      }
    }

PATH_DECIDER相关子函数

GenerateObjectStopDecision主要用以生成停止决策。


ObjectStop PathDecider::GenerateObjectStopDecision(
    const Obstacle &obstacle) const {
  ObjectStop object_stop;
  // Calculate stop distance with the obstacle using the ADC's minimum turning radius
  double stop_distance = obstacle.MinRadiusStopDistance(
      VehicleConfigHelper::GetConfig().vehicle_param());
  object_stop.set_reason_code(StopReasonCode::STOP_REASON_OBSTACLE);
  object_stop.set_distance_s(-stop_distance);
  // 停止时的参考位置
  const double stop_ref_s =
      obstacle.PerceptionSLBoundary().start_s() - stop_distance;
  const auto stop_ref_point =
      reference_line_info_->reference_line().GetReferencePoint(stop_ref_s);
  object_stop.mutable_stop_point()->set_x(stop_ref_point.x());
  object_stop.mutable_stop_point()->set_y(stop_ref_point.y());
  object_stop.set_stop_heading(stop_ref_point.heading());
  return object_stop;
}

对于停止距离的计算,会调用MinRadiusStopDistance函数,
modules/planning/common/obstacle.cc

double Obstacle::MinRadiusStopDistance(
    const common::VehicleParam& vehicle_param) const {
  if (min_radius_stop_distance_ > 0) {
    return min_radius_stop_distance_;
  }
  // 定义一个停止距离的缓冲区0.5m
  static constexpr double stop_distance_buffer = 0.5;
  // 获取最小安全转弯半径
  const double min_turn_radius = VehicleConfigHelper::MinSafeTurnRadius();
  // 计算横向距离
  double lateral_diff =
      vehicle_param.width() / 2.0 + std::max(std::fabs(sl_boundary_.start_l()),
                                             std::fabs(sl_boundary_.end_l()));
  const double kEpison = 1e-5;
  lateral_diff = std::min(lateral_diff, min_turn_radius - kEpison);
  // 勾股定理求得停止距离
  double stop_distance =
      std::sqrt(std::fabs(min_turn_radius * min_turn_radius -
                          (min_turn_radius - lateral_diff) *
                              (min_turn_radius - lateral_diff))) +
      stop_distance_buffer;
  // 减掉车辆前端到后轴中心的距离
  stop_distance -= vehicle_param.front_edge_to_center();
  // 限幅
  stop_distance = std::min(stop_distance, FLAGS_max_stop_distance_obstacle); // 10.0
  stop_distance = std::max(stop_distance, FLAGS_min_stop_distance_obstacle); // 6.0
  return stop_distance;
}

计算示意图如下:
【Apollo学习笔记】——规划模块TASK之PATH_DECIDER_第3张图片

modules/common/configs/vehicle_config_helper.cc

double VehicleConfigHelper::MinSafeTurnRadius() {
  const auto &param = vehicle_config_.vehicle_param();
  double lat_edge_to_center =
      std::max(param.left_edge_to_center(), param.right_edge_to_center());
  double lon_edge_to_center =
      std::max(param.front_edge_to_center(), param.back_edge_to_center());
  return std::sqrt((lat_edge_to_center + param.min_turn_radius()) *
                       (lat_edge_to_center + param.min_turn_radius()) +
                   lon_edge_to_center * lon_edge_to_center);
}

MinSafeTurnRadius这段函数是获取当车辆以最大转向角转弯时的最大安全转弯半径。具体计算参考下图:
【Apollo学习笔记】——规划模块TASK之PATH_DECIDER_第4张图片
A , B , C , D A,B,C,D A,B,C,D分别是车辆的四个角, X O XO XO是车辆的最小转弯半径VehicleParam.min_turn_radius() X X X A D AD AD之间的距离是左边缘到中心的距离left_edge_to_center X X X A B AB AB之间的距离是前边缘到中心的距离front_edge_to_center。最大安全转弯半径则是 A O AO AO,定义中心到横向边缘最长的距离为 l l a t l_{lat} llat,到纵向边缘最长的距离为 l l o n l_{lon} llon A O AO AO计算公式如下:
A O = ( X O + l l a t ) 2 + l l o n 2 AO=\sqrt{(XO+l_{lat})^2+{l_{lon}}^2} AO=(XO+llat)2+llon2
个人感觉这么做是为了获得足够的安全冗余量。

参考

[1] 路径决策

你可能感兴趣的:(Apollo,自动驾驶,决策规划,算法,planning,apollo,人工智能)