- 新手必看——ctf六大题型介绍及六大题型解析&举例解题
沛哥网络安全
web安全学习安全udp网络协议
CTF(CaptureTheFlag)介绍与六大题型解析一、什么是CTF?CTF(CaptureTheFlag),意为“夺旗赛”,是一种信息安全竞赛形式,广泛应用于网络安全领域。CTF竞赛通过模拟现实中的网络安全攻防战,让参赛者以攻防对抗的形式,利用各种信息安全技术进行解决一系列安全问题,最终获得“旗帜(Flag)”来获得积分。CTF赛事一般分为两种形式:Jeopardy(解题模式):参赛者通过解
- 详解AI作画算法原理
Jimaks
后端AIpythonai作画python人工智能
在艺术与科技的交汇处,AI作画正以惊人的创造力刷新着我们对美的认知。这一领域融合了深度学习、计算机视觉和生成模型的前沿技术,让机器能够“想象”并创作出令人惊叹的图像。本文将深入浅出地探讨AI作画的核心算法原理,分析常见问题与易错点,并通过一个简单的代码示例,带领大家一窥AI艺术创作的奥秘。一、核心概念与原理1.生成对抗网络(GANs)GANs是AI作画中最著名的算法之一,由IanGoodfello
- 云原生AI Agent应用安全防护方案最佳实践(上)
佛州小李哥
AWS技术AI安全人工智能亚马逊云科技awsai语言模型安全云计算
当下,AIAgent代理是一种全新的构建动态和复杂业务场景工作流的方式,利用大语言模型(LLM)作为推理引擎。这些Agent代理应用能够将复杂的自然语言查询任务分解为多个可执行步骤,并结合迭代反馈循环和自省机制,利用工具和Agent背后的API生成最终结果,返回给终端用户。这种方法需要评估Agent应用的鲁棒性,尤其是对于那些可能存在对抗攻击或有害内容的用户场景。亚马逊云科技BedrockAgen
- 基于PyTorch的生成对抗网络入门(5)——利用PyTorch搭建条件生成对抗网络(CGAN)超详解
wendy_ya
PyTorchpythonpytorch生成对抗网络深度学习python神经网络
目录一、案例描述二、代码详解2.1构建真实数据集2.2创建生成虚假数据2.3构建判别器2.3.1创建生成虚假标签2.3.2判别器类2.3.3测试判别器2.4构建生成器2.4.1生成器类2.4.2测试生成器2.5训练GAN2.6测试生成器的生成效果一、案例描述本文介绍利用条件生成对抗网络(CGAN)进行手写数字生成。比如说,要求生成不同的,但是都代表某一个数字的图像。二、代码详解2.1构建真实数据集
- AI时代的前端开发:拥抱变革,提升对抗风险能力
前端
AI技术正以前所未有的速度改变着世界,前端开发领域也经历着深刻的变革。得益于AI写代码工具的出现,开发效率得到显著提升,但与此同时,AI也带来了新的风险和挑战。本文将探讨AI浪潮下前端开发人员面临的风险,并提出提升对抗风险能力的策略,帮助开发者在AI时代保持竞争力。AI浪潮下的前端开发风险:机遇与挑战并存AI赋能前端开发,无疑带来了巨大的机遇:代码生成效率提升、开发周期缩短、人力成本降低等等。然而
- AI换脸技术原理以及为什么需要进行海量次数的模型训练?
码场老菜鸟
人工智能
AI换脸技术通俗点说就是“深度伪造技术”,是基于人工智能,特别是深度学习和生成对抗网络(GANs)的一种技术,能够将一个人的面部特征与另一个人的面部特征进行交换,从而生成非常真实的换脸视频或图像。AI换脸技术的基本原理生成对抗网络(GANs)GANs是AI换脸技术背后的核心算法,它由两个神经网络组成,一个是生成器,负责生成新的图像或视频;另一个是判别器,负责判断生成的图像是否真实。通过不断的“对抗
- AI工具+看板管理:职场人如何实现高效时间管理?
引言:AI爆火背后,职场人的“效率焦虑”春节刚过,一款名为DeepSeek的AI工具突然刷屏,成为职场人热议的焦点。它的爆火不仅因“文字细腻、逻辑深度”的特点,更因它让打工人看到了“用AI对抗内卷”的可能性——文案策划用它优化选题,程序员靠它生成代码,甚至国企员工也能用它秒杀会议纪要。然而,AI的强势入场也让许多人陷入新的焦虑:工具越来越多,为什么效率反而更难提升?答案或许在于:单靠AI无法解决系
- hvv 云安全专项检测工具
问脉团队·VeinMind
问脉Tools云原生安全容器网络安全
又是一年的HVV季,不知各位红方蓝方是否已经做好了准备?这一年的时间,不知各位有没有注意到,各个迹象表明,安全对抗正逐步迁移至云端。面对这种迅猛的云原生趋势,在本次的hvv中,我们应该如何对这种新型的云上攻击进行防护?有效的云上攻击防护需要从基础架构开始。云服务提供商应该提供全方位的安全保障,包括数据隔离、访问控制和监控等。人为因素在云安全中占据重要地位。许多安全事件都源于员工的错误操作或者是对安
- Python黑客技术实战指南:从网络渗透到安全防御
Lethehong
Python在手bug溜走!码农的快乐你不懂~安全python网络安全
嗨,我是Lethehong!立志在坚不欲说,成功在久不在速欢迎关注:点赞⬆️留言收藏欢迎使用:小智初学计算机网页AI目录1.Python在网络安全领域的优势2.网络侦察与信息收集2.1子域名枚举技术2.2端口扫描高级技巧3.漏洞扫描与利用技术3.1SQL注入检测工具3.2缓冲区溢出漏洞利用4.密码破解与加密对抗4.1多线程密码爆破4.2流量加密与解密5.后渗透攻击技术深度解析权限维持技术横向移动技
- 【论文精读】《Towards Deep Learning Models Resistant to Adversarial Attacks》
智算菩萨
深度学习人工智能
摘要本文探讨了深度学习模型在面对对抗性攻击时的脆弱性,并提出了一种基于鲁棒优化的方法来增强神经网络的对抗鲁棒性。通过鞍点优化框架,作者提供了对抗攻击和防御机制的统一视角,并在MNIST和CIFAR-10数据集上验证了其方法的有效性。本文的核心贡献包括:1)定义攻击模型和扰动集以优化模型参数;2)强调网络容量对对抗鲁棒性的影响;3)提出对抗训练作为提升模型鲁棒性的关键方法。本文为深度学习模型的对抗鲁
- DeepSeek生成对抗网络(GAN)的训练与应用
Evaporator Core
Python开发经验人工智能DeepSeek快速入门生成对抗网络人工智能神经网络
生成对抗网络(GenerativeAdversarialNetworks,GANs)是深度学习领域的一项重要技术,能够生成逼真的图像、音频和文本数据。GANs通过两个神经网络(生成器和判别器)的对抗训练,实现了高质量数据的生成。DeepSeek提供了强大的工具和API,帮助我们高效地训练和应用GANs。本文将详细介绍如何使用DeepSeek进行GAN的训练与应用,并通过代码示例帮助你掌握这些技巧。
- PyTorch深度学习实战(37)——CycleGAN详解与实现
盼小辉丶
生成对抗网络pytorch生成模型
PyTorch深度学习实战(37)——CycleGAN详解与实现0.前言1.CycleGAN基本原理2.CycleGAN模型分析3.实现CycleGAN小结系列链接0.前言CycleGAN是一种用于图像转换的生成对抗网络(GenerativeAdversarialNetwork,GAN),可以在不需要配对数据的情况下将一种风格的图像转换成另一种风格,而无需为每一对输入-输出图像配对训练数据。Cyc
- 个性化音乐生成:生成式AI在音乐推荐与创作中的应用
二进制独立开发
非纯粹GenAIGenAI与Python人工智能python语言模型自然语言处理生成对抗网络知识图谱神经网络
文章目录引言生成式AI与个性化音乐生成1.变分自编码器(VAE)2.生成对抗网络(GAN)3.Transformer模型4.扩散模型(DiffusionModels)技术实现1.音乐特征提取2.基于VAE的音乐生成3.基于Transformer的音乐生成4.基于扩散模型的音乐生成业务分析1.用户体验提升2.音乐创作工具3.音乐推荐系统4.技术挑战结论引言随着生成式人工智能(GenerativeAI
- 深度学习之DCGAN算法深度解析
贾斯汀玛尔斯
python机器学习人工智能深度学习
DCGAN(DeepConvolutionalGenerativeAdversarialNetworks)算法解析1.DCGAN算法由来DCGAN(深度卷积生成对抗网络)是IanGoodfellow在2014年提出的GAN(生成对抗网络)的改进版本,由Radford等人在2015年的论文《UnsupervisedRepresentationLearningwithDeepConvolutional
- 软件熵:AI如何平衡系统的复杂性与可维护性
前端
软件开发的世界,充满了挑战。随着项目规模的扩大和功能的迭代,软件系统不可避免地会走向复杂,如同宇宙的熵增一般,这就是所谓的“软件熵”。软件熵的增加会导致代码难以理解、维护成本飙升,最终影响软件的质量和用户体验。如何有效对抗软件熵,提升软件开发效率和可维护性,成为了摆在开发者面前的一道难题。而近年来兴起的AI写代码工具,例如ScriptEcho,为我们提供了一种全新的解决方案。对抗软件熵的挑战:传统
- 讯飞绘镜(ai生成视频)技术浅析(五):视频生成
爱研究的小牛
AIGC—视频人工智能音视频AIGC深度学习
讯飞绘镜(AI生成视频)是一种先进的AI视频生成技术,能够将静态的分镜画面转换为动态视频,并使画面中的元素按照一定的逻辑和动作进行动态展示。一、讯飞绘镜视频生成技术概述讯飞绘镜的视频生成技术主要包含以下几个核心模块:1.视频生成模型:包括生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(DiffusionModels)等。2.分镜转换模块:将静态分镜画面转换为动态视频。3.动作与逻辑控制模
- 在AWS上设计与实现个人财务助理的Web应用程序
weixin_30777913
python人工智能aws云计算flask
设计AWS上的个人财务助理的Web应用程序,它用Python+Flask构建可以从本地批量上传特定格式的银行对账单pdf文件,存储到S3,解析其中的内容数据,并将解析出的数据内容存储到Aurora数据库。它可以适配电脑和移动端的浏览器,网页使用前端框架优化加载性能,并使用静态文件及js缓存和分发加快浏览器的加载速度,有一定网络安全性,可以对流量进行监控,抵抗DDOS网络攻击,对抗XSS和SQL注入
- 遗传算法与深度学习实战(33)——WGAN详解与实现
盼小辉丶
深度学习人工智能生成对抗网络
遗传算法与深度学习实战(33)——WGAN详解与实现0.前言1.训练生成对抗网络的挑战2.GAN优化问题2.1梯度消失2.2模式崩溃2.3无法收敛3WassersteinGAN3.1Wasserstein损失3.2使用Wasserstein损失改进DCGAN小结系列链接0.前言原始的生成对抗网络(GenerativeAdversarialNetwork,GAN)在训练过程中面临着模式坍塌和梯度消失
- 遗传算法与深度学习实战(32)——生成对抗网络详解与实现
盼小辉丶
遗传算法与深度学习实战深度学习生成对抗网络人工智能
遗传算法与深度学习实战(32)——生成对抗网络详解与实现0.前言1.生成对抗网络2.构建卷积生成对抗网络小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetworks,GAN)是一种由两个相互竞争的神经网络组成的深度学习模型,它由一个生成网络和一个判别网络组成,通过彼此之间的博弈来提高生成网络的性能。生成对抗网络使用神经网络生成与原始图像集非常相似的新图像,它在图像生
- MATLAB机器学习、深度学习
Yolo566Q
机器学习matlabmatlab机器学习深度学习
目录第一章MATLAB图像处理基础第二章BP神经网络及其在图像处理中的应用第三章卷积神经网络及其在图像处理中的应第四章迁移学习算法及其在图像处理中的应用第五章生成式对抗网络(GAN)及其在图像处理中的应用第六章目标检测YOLO模型及其在图像处理中的应用第七章讨论与答疑近年来,随着无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是在计算机
- 机器学习,深度学习,神经网络,深度神经网络
武昌库里写JAVA
面试题汇总与解析java学习开发语言课程设计springboot
人工智能包含机器学习,机器学习包含深度学习(是其中比较重要的分支)。深度学习源自于人工神经网络的研究,但是并不完全等于传统神经网络。神经网络与深度神经网络的区别在于隐藏层级,通常两层或两层以上隐藏层的网络叫做深度神经网络。一般隐藏层越多,精确度越高。深度学习的算法又分很多种,比较典型的四种:卷积神经网络—CNN,循环神经网络—RNN,生成对抗网络—GANs,深度强化学习—RL。机器学习和深度学习的
- 生成对抗网络(Generative Adversarial Network)原理与代码实战案例讲解
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
生成对抗网络(GenerativeAdversarialNetwork)原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来生成对抗网络(GenerativeAdversarialNetwork,简称GAN)是由IanGoodfellow等人在2014年提出的一种新型神经网络架构。GAN的出现为生成模型领
- 基于CNN(一维卷积Conv1D)+LSTM+Attention 实现股票多变量时间序列预测(PyTorch版)
矩阵猫咪
cnnlstmpytorch注意力机制卷积神经网络长短期记忆网络Attention
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。在深度学习的众多模型中,卷积神经网络(CNN)和长短期记忆网络(LSTM)因其独特的优势
- 强化学习中的关键模型与算法:从Actor-Critic到GRPO
人工智能
强化学习中的关键模型与算法:从Actor-Critic到GRPO强化学习中的Actor-Critic模型是什么?这与生成对抗网络(GANs)十分相似。在生成对抗网络中,生成器和判别器模型在整个训练过程中相互对抗。在强化学习的Actor-Critic模型中,也存在类似的概念:Actor-Critic(A2C、A3C)是一种流行的强化学习架构,它结合了两个组件:Actor(行动者)——学习策略($\p
- 我,是我命运的主宰
北纬文公子
个人成长知识管理
对世界的本来描述、解构的再客观再准确,也无法动摇客观世界的运转意志。真正的强者是应该在复杂变幻的动态中、千丝万缕的痕迹中找到自己的胜点,做出自己的优胜。这不是狭窄于与人的博弈,狭窄于与社会的对抗,这是对生命力的回应。《永不屈服》英国诗人-威廉亨利夜色沉沉将我笼罩,漆黑犹如地底暗道;我要感谢上苍赐予,我的心灵永不屈服。环境多么凶险飘摇,我也不会退缩哀嚎;挑战有时胆寒心焦,血流满面我不折腰。在愤怒和悲
- 对抗训练对模型性能有何影响?
借雨醉东风
热点追踪人工智能机器学习深度学习
关注我,持续分享逻辑思维&管理思维&面试题;可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导;推荐专栏《10天学会使用asp.net编程AI大模型》,目前已完成所有内容。一顿烧烤不到的费用,让人能紧跟时代的浪潮。从普通网站,到公众号、小程序,再到AI大模型网站。干货满满。学成后可接项目赚外快,绝对划算。不仅学会如何编程,还将学会如何将AI技术应用到实际问题中,为您的职业生涯增添一笔宝贵的财富
- 网络安全攻防实战:从基础防护到高级对抗
一ge科研小菜鸡
运维网络
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言在信息化时代,网络安全已经成为企业、政府和个人必须重视的问题。从数据泄露到勒索软件攻击,每一次安全漏洞都可能造成巨大的经济损失和隐私风险。本教程将通过详细的案例、代码示例和实用工具,帮助读者从基础安全防护到高级安全对抗,系统掌握网络安全攻防的核心技术。1.常见网络攻击方式与防御措施1.1SQL注入攻击攻击者在输入字段中插入恶意SQL代码,绕过
- 大数据技术在数据安全治理中的应用
罗思付之技术屋
综合技术探讨及方案专栏大数据
摘要面对新形势下的数据安全治理挑战,顺应数据安全领域的技术发展趋势,针对大型国企在数据安全治理实际应用中突出的关键权限人员识别问题,提出了一种基于图算法的关键权限人员识别技术。该技术可以发现系统中潜在的权限影响因素,并可从多个角度衡量不同含义的权重影响力,识别结果可解释性强。针对数据安全治理中的用户与实体行为异常检测问题,提出一种基于生成对抗网络的用户与实体行为异常检测方法,实验结果表明,所提方法
- 开放传神(OpenCSG)手撕Sora的Diffusion Transformer (DiT)算法
OpenCSG
transformer算法深度学习人工智能stablediffusion
“Sora的出现不是偶然,而是经过长期积累、反复试错及用户反馈的必然。”OpenAI尝试过递归网络、生成对抗网络、自回归Transformer及扩散模型。最终诞生了DiffusionTransformer。其充分利用了大语言模型Token的好处,让像素也能够被预测(Patches)。Sora的诞生不亚于2023年ChatGPT的出现,因为我们的世界是一个五彩斑斓的图像和视频组成。Sora通过社区和
- 如何解决小尺寸图像分割中的样本不均衡问题
司南锤
深度学习遥感笔记深度学习
1.生成对抗数据增强(Copy-PasteAugmentation)原理:将稀有目标的像素块复制粘贴到其他图像中,低成本生成平衡数据。适用场景:小目标(如车辆、船只)或极端稀疏类别(如灾害损毁区域)。PyTorch实现:importrandomdefcopy_paste_augment(image,mask,paste_image,paste_mask):#从粘贴数据中随机选择一个目标实例obj_
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出