Scrapy是Python中最流行的网页爬虫框架之一,强大且功能丰富。通过Scrapy,你可以快速创建一个爬虫,高效地抓取和处理网络数据。在这篇文章中,我们将介绍如何使用Scrapy构建一个基础的爬虫。
Scrapy是一个用Python实现的开源网页爬虫框架,主要用于网页数据抓取和分析。它提供了所有的基础功能,包括解析HTML(或其他格式的数据)、处理HTTP请求、处理cookies和session、多线程抓取等等,还提供了多种类型的爬虫模型,适用于不同的需求。
安装Scrapy非常简单,只需要使用pip安装即可:
pip install Scrapy
Scrapy使用一个单独的项目空间来组织每一个爬虫。你可以使用Scrapy的命令行工具来创建一个新的项目:
scrapy startproject tutorial
这会创建一个名为"tutorial"的Scrapy项目,项目结构如下:
tutorial/
scrapy.cfg # 项目的配置文件
tutorial/ # 项目的Python模块
__init__.py
items.py # 项目的数据模型文件
middlewares.py # 项目的中间件文件
pipelines.py # 项目的数据处理管道文件
settings.py # 项目的设置文件
spiders/ # 存放爬虫代码的目录
__init__.py
在Scrapy中,爬虫是一类定义了如何爬取某个网站(或一组网站)的类,包括如何进行网页爬取(即初始URL)、如何跟踪链接、如何从网页的内容中提取数据等等。
下面我们将创建一个简单的Scrapy爬虫,用于爬取quotes.toscrape.com网站的引用内容。首先,我们需要在spiders目录下创建一个新的Python文件quotes_spider.py:
import scrapy
class QuotesSpider(scrapy.Spider):
name = "quotes"
def start_requests(self):
urls = [
'http://quotes.toscrape.com/page/1/',
]
for url in urls:
yield scrapy.Request(url=url, callback=self.parse)
def parse(self, response):
page = response.url.split("/")[-2]
filename = f'quotes-{page}.html'
with open(filename, 'wb') as f:
f.write(response.body)
self.log(f'Saved file {filename}')
在这个代码中,我们定义了一个名为QuotesSpider的Scrapy爬虫。爬虫首先会请求URLs列表中的每个URL,然后对每个响应进行处理,将响应的内容保存到一个HTML文件中。
创建好爬虫后,你可以使用Scrapy的命令行工具来运行爬虫:
scrapy crawl quotes
当你运行这个命令,Scrapy将会找到名为"quotes"的爬虫,并开始爬取,然后将爬取的内容保存到文件中。
通过这篇文章,你应该对Scrapy有了基本的了解,并能够创建和运行一个简单的Scrapy爬虫。在下一篇文章中,我们将更深入地探讨Scrapy的功能,包括如何提取数据,如何使用Scrapy的数据管道,如何处理登录和cookies等等。