从格灵深瞳中报稳定盈利,看AI公司的核心竞争力

2023年过半,人工智能产业话题不断。大模型和AIGC掀起热潮,让众多AI公司开始进入新一轮竞赛。但与此同时,不少AI公司依然处于亏损中,研发投入和商业产出难以实现正循环。如何形成健康的商业模式,仍是一大挑战。

AI公司商业化的关键,事实上在于其核心技术能否适应产业应用的需求,并围绕核心技术构建产品与解决方案。这一点,A股“AI计算机视觉第一股”格灵深瞳的发展路径,就是一大参考。

格灵深瞳研发了基于深度学习的模型训练与数据生产技术、3D 立体视觉技术、自动化交通场景感知与事件识别技术、大规模跨镜追踪技术和机器人感知与控制技术五大核心技术,用于解决关键场景的需求,从而打造出成功的产品矩阵和解决方案,最终迈过了盈亏平衡线。

8月25日晚,格灵深瞳发布2023年度半年报,报告期内,其实现营业收入1.57亿元,同比增长34.35%,归母净利润同比增长116.84%。这是对其2022年实现全年盈利的一种延续,也验证了格灵深瞳将技术产品化、商业化的能力。

这种自主造血的能力,赋予了格灵深瞳更大的底气,去面对AI行业的创新浪潮。

保持稳定盈利,源自以场景为导向的技术研发

格灵深瞳的收入与盈利表现,仅仅是其商业化成功的一环。在综合财务数据上,我们还能看出公司经营效率的提高。

例如,在运营情况上,格灵深瞳半年报显示,其应收账款同比下降15.94%,存货周转天数同比下降135天,整体毛利率还略有提升。而在费用层面,格灵深瞳注重研发,同时也实现了整体的控费增效,经营侧重点明显。半年报显示,格灵深瞳本期研发费用为7706万元,同比增长34.96%,研发投入占营收比重高达48.95%。

纵观财报,格灵深瞳营收与研发费用实现了同步增长,且在这个过程中稳定盈利。这构成了AI行业可贵的正循环——研发投入带来产品,产品商业化落地产生盈利,进而继续投入研发。

这份成果并非一蹴而就,在半年报中,格灵深瞳通过对核心技术及在研项目的分析,展示了技术商业化的内涵:以核心技术为底座,面向多种场景进行针对性开发。

这个底座,是深瞳大脑。恰如人脑先收集与处理外界信息,再生成想法、指挥动作,深瞳大脑也以认知和处理外界数据为出发点,目前,深瞳大脑可支持数十亿训练数据、数亿类别任务,数十亿参数模型的训练。

深瞳大脑包含数据采集、模型训练、数据管理等多个模块的数据平台和训练平台。训练平台产生高质量算法并推动应用落地,数据平台收集应用产生的优质数据,从而促进算法的提升。这些算法、应用和数据在深瞳大脑系统内形成了人工智能的正向循环。

从格灵深瞳中报稳定盈利,看AI公司的核心竞争力_第1张图片

基于核心技术,格灵深瞳切入具体行业,通过对该行业场景的深入了解,明确现有技术存在的难点,再利用技术解决问题,不断开发和完善解决方案,获取商业化成果和客户认可。

例如在轨交运维领域,实现自动化巡检、提升故障诊断与解决效率,是行业的迫切需求。列车零部件组成复杂,传统技术方法误判率高。格灵深瞳的3D重建与立体视觉分析技术,解决了传统算法中误差较大的问题。同时,其机器人感知与控制技术,在实时定位与建图、机械臂视觉反馈、机器人路径规划与自主导航等方面,具有良好的定位精度,可以高质量执行场景作业。

因此,格灵深瞳通过应用机器人主动感知技术、自主规划与控制技术、虚拟示教与远程遥感技术,有效提升了机器人的环境适应性,提升了实施效率。目前,其轨交运维业务已构建成熟的解决方案,在高铁和地铁项目中通过验收,实现落地应用。

从格灵深瞳中报稳定盈利,看AI公司的核心竞争力_第2张图片

在智慧金融、城市管理、商业零售、轨交运维这四大领域,格灵深瞳都建立了完善的研发模式,并将技术能力与商业化经验融合,加快落地应用。半年报显示,格灵深瞳已有多个在研项目进展进入“大规模商业化”。

总的来看,盈利依然是AI行业的稀缺属性,格灵深瞳的细分龙头地位因此确立。而从行业发展趋势看,AI技术在此时迎来大模型等新概念的冲击,既是机遇,也意味着更多投入。

面对大势,已经步入良性商业化的格灵深瞳,更加游刃有余。

前进之路:探索AI新场景,大模型发散更多可能性

如何挖掘AI行业的更多价值?在当前市场背景下,两种思维可供参考。一方面是依托核心技术向更多行业延伸,提升技术的边际产值;另一方面则是面向大模型这样的热点技术,开发新产品,或对现有的技术和产品进行升级,发挥协同效应。

在本次半年报中,格灵深瞳对二者皆有涉及,并都已取得成果。

关于挖掘核心技术的更多潜力,格灵深瞳的3D立体视觉技术是一个很好的案例。在轨交、体育、元宇宙行业,格灵深瞳通过3D立体视觉技术与其他核心技术的交叉应用,实现了一个个生动的商业化成果。

在轨交运维领域,格灵深瞳基于3D重建与立体视觉分析,以及机器人主动感知技术等技术,构建了列车智能检测解决方案。该方案实现了对列车外观95%以上的覆盖,并通过极高精度的感知与重建能力,覆盖常见的190余种故障项点,在高级重要性项点的故障诊断成功率大于95%。通过落地格灵深瞳智能巡检机器人,列车自动巡检效率大大提升。

从格灵深瞳中报稳定盈利,看AI公司的核心竞争力_第3张图片

在体育健康领域,3D立体视觉分析技术,可以准确获得运动者的姿态数据和环境数据。运动姿态分析技术,克服了人体关键点采集不准不稳等难题,可更精确地用于人体行为分析,在仰卧起坐、引体向上、足球篮球等30余项考核项目和100余个交互训练项目中发挥关键作用。

今年5月,格灵深瞳发布了“深瞳阿瞳目”解决方案,涵盖体育训考系统、体感互动系统、体育大数据分析系统三大部分,并将体育课从训练到考试、教研等六大场景囊括其中。

这一方案有助于解决当前校园体育训练针对性不强、教学与考试流程繁琐且判别不精准等传统问题。一方面提升了教考效率,另一方面让采集到的信息回归大数据系统,为制定教学和训练计划,做出个性化分析支持。

从格灵深瞳中报稳定盈利,看AI公司的核心竞争力_第4张图片

在第三个领域,元宇宙,格灵深瞳也通过类似路径进行了布局。3D立体视觉技术的重建能力、动作姿态感知能力等,为更好连接起虚拟世界与现实世界提供了条件,为大规模沉浸式人机交互铺平了道路,可用于沉浸式互动游戏、赛事、发布会、文旅和展厅等领域。在二季度的2023中国科幻大会上,格灵深瞳展出的四款沉浸式互动游戏便大受欢迎。

再将视线转到大模型应用上,AI行业当前盛行对话、搜索式产品,实际并未深度探索大模型潜力。除了直接产品化,如何用大模型提升原有的业务效率,改善业务流程,也是一道考题。格灵深瞳,已经写下了自己的一部分思路。

在垂直业务领域,大模型可以通过“理解”规则,自主进行一些固定操作,降低人工的介入次数。比如在智慧金融领域,格灵深瞳搭建了适用于该领域的行为分析大模型技术架构,目前已完成场景试验、技术论证并实现落地应用。在危险或异常场景中,大模型可以根据设定的规则,达成更高效、精确的识别效果。

此外,格灵深瞳正将全量数据经过多轮迭代完成对多模态大模型的数据投喂,进而结合业务对大模型进行知识蒸馏,以求得到可在实际业务中提供实时服务能力的模型,并服务于多条产品线。

结语

当前,千行百业的技术变革仍在发生,技术底座和应用生态都还需要不断创新。虽然大模型等新概念可以带来周期性红利,但只有确定性十足的商业化能力,才是坚持研发、持续创新的长期动力。

回归公司视角,格灵深瞳在更多细分领域实现商业化突破,也可以证明AI在更多行业日渐成熟。AI企业推进研发的过程,也是沉淀行业数据和经验的过程。随着技术能力增强和市场理解加深,格灵深瞳在一个又一个行业形成了竞争优势,走向业务的规模化落地。AI技术的更多想象空间,因此而稳步打开。

来源:松果财经

你可能感兴趣的:(财经,人工智能)