为什么gpt输出有随机性?

以下答案由chatGPT产生!

为什么gpt输出有随机性?

GPT(Generative Pre-trained Transformer)是一种基于Transformer架构的神经语言模型,它是一个深度学习模型,通过在大规模文本数据上进行预训练,从而能够生成人类语言。由于GPT是一个生成模型,因此它的输出具有一定的随机性。

这种随机性是由模型的设计和训练方式所决定的。GPT模型是由多个堆叠的Transformer模块组成,每个模块都包含了多头自注意力机制和前向神经网络。在训练过程中,GPT模型会接收大量的文本数据,并尝试从中学习语言的概率分布。由于语言的使用是非常灵活和多样化的,因此GPT模型在预测下一个单词或句子时,可能会有多种可能性。因此,当我们给定一个特定的输入,GPT模型的输出可能会略微有所不同。

此外,GPT模型还包含一些随机性的元素,比如Dropout和Masked Language Modeling等技术,这些技术在训练过程中会随机地删除或遮蔽一些输入或中间状态,从而增加了模型的鲁棒性和泛化能力,但也会导致输出的随机性增加。

因此,GPT模型的输出具有一定的随机性是正常的现象,这也是深度学习模型的普遍特征之一。

但是模型参数在推理的时候是不变的,为什么在推理的时候GPT还会有随机性?

在推理时,GPT的模型参数是固定的,因此生成的文本是确定的,但是在一定程度上仍然存在随机性。这是因为在生成文本时,GPT模型会采用一种称为“采样”的策略,该策略会引入一些随机性。

具体来说,GPT模型在生成文本时,通常会根据前面的文本内容预测下一个单词或字符,并从预测的概率分布中进行采样,从而得到生成的单词或字符。在这个过程中,采样过程是基于概率分布进行的,因此在相同的输入条件下,模型每次生成的文本可能会有所不同。这种随机性通常可以通过控制采样的策略和参数来降低,例如调整采样温度、采用更稳定的策略等。

此外,模型推理的输入也可能会引入一些随机性。例如,在文本生成任务中,模型的输入可以是一个开头的文本片段,而这个文本片段可能有多种不同的方式可以生成。因此,不同的输入条件也会导致生成的文本略有不同。

总之,虽然GPT在推理时的模型参数是固定的,但是采样过程和输入条件仍然可能会导致输出的随机性

GPT推理的时候采样策略是什么?

GPT在推理时的采样策略通常是从模型输出的概率分布中进行采样。具体来说,给定前面的文本内容,GPT模型会根据这些文本内容预测下一个单词或字符的概率分布,然后从这个概率分布中进行采样,得到生成的单词或字符。

在采样的过程中,GPT模型可以采用多种不同的策略,包括:

Greedy Sampling:直接选择概率最大的单词或字符作为下一个生成的内容。这种策略最简单、速度最快,但是会导致生成的文本内容过于确定性和缺乏多样性。

Top-K Sampling:限制在预测的概率分布中只保留前K个最可能的单词或字符,然后从这K个单词或字符中随机采样。这种策略可以增加生成文本的多样性,同时避免一些不合理或低概率的单词或字符出现。

Top-p(nucleus)Sampling:限制在预测的概率分布中只保留累积概率大于某个阈值(通常为0.9或0.95)的单词或字符,然后从这个集合中随机采样。这种策略也可以增加生成文本的多样性,同时避免一些低概率的单词或字符出现,但相对于Top-K Sampling,它能够更灵活地处理概率分布的形状。

以上是常用的几种采样策略,当然还有其他的一些策略,比如Beam Search等。实际应用中,不同的任务和需求需要选择不同的采样策略,以达到更好的效果。

chatGPT的采样策略是什么

作为一个大型语言模型,ChatGPT并没有一个固定的采样策略,它可以使用多种不同的策略来生成回复。在常规设置下,ChatGPT的默认采样策略通常是Nucleus Sampling(又称为Top-p Sampling),即从预测概率分布中选择累积概率大于一个预设的阈值(通常是0.9或0.95)的最小单词集合,然后从这个集合中随机采样生成下一个单词。

这种策略相比于贪心采样(即选择预测概率最大的单词)或固定K大小的Top-K采样,更加灵活,在保证生成回复的准确性的同时,可以增加回复的多样性和创造力。同时,ChatGPT也提供了一些参数和选项,以便用户可以自定义采样策略,比如温度、采样次数、回复长度等等。用户可以根据自己的需要来调整这些参数,以达到更好的效果。

代码

https://github.com/Morizeyao/GPT2-Chinese/blob/bbb44651be8361faef35d2a857451d231b5ebe14/generate.py

def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
    """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        Args:
            logits: logits distribution shape (vocabulary size)
            top_k > 0: keep only top k tokens with highest probability (top-k filtering).
            top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
                Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    assert logits.dim() == 1  # batch size 1 for now - could be updated for more but the code would be less clear
    top_k = min(top_k, logits.size(-1))  # Safety check
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        indices_to_remove = sorted_indices[sorted_indices_to_remove]
        logits[indices_to_remove] = filter_value
    return logits


def sample_sequence(model, context, length, n_ctx, tokenizer, temperature=1.0, top_k=30, top_p=0.0, repitition_penalty=1.0,
                    device='cpu'):
    context = torch.tensor(context, dtype=torch.long, device=device)
    context = context.unsqueeze(0)
    generated = context
    with torch.no_grad():
        for _ in trange(length):
            inputs = {'input_ids': generated[0][-(n_ctx - 1):].unsqueeze(0)}
            outputs = model(
                **inputs)  # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
            next_token_logits = outputs[0][0, -1, :]
            for id in set(generated):
                next_token_logits[id] /= repitition_penalty
            next_token_logits = next_token_logits / temperature
            next_token_logits[tokenizer.convert_tokens_to_ids('[UNK]')] = -float('Inf')
            filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
            next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
            generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
    return generated.tolist()[0]


def fast_sample_sequence(model, context, length, temperature=1.0, top_k=30, top_p=0.0, device='cpu'):
    inputs = torch.LongTensor(context).view(1, -1).to(device)
    if len(context) > 1:
        _, past = model(inputs[:, :-1], None)[:2]
        prev = inputs[:, -1].view(1, -1)
    else:
        past = None
        prev = inputs
    generate = [] + context
    with torch.no_grad():
        for i in trange(length):
            output = model(prev, past=past)
            output, past = output[:2]
            output = output[-1].squeeze(0) / temperature
            filtered_logits = top_k_top_p_filtering(output, top_k=top_k, top_p=top_p)
            next_token = torch.multinomial(torch.softmax(filtered_logits, dim=-1), num_samples=1)
            generate.append(next_token.item())
            prev = next_token.view(1, 1)
    return generate


# 通过命令行参数--fast_pattern,指定模式
def generate(n_ctx, model, context, length, tokenizer, temperature=1, top_k=0, top_p=0.0, repitition_penalty=1.0, device='cpu',
             is_fast_pattern=False):
    if is_fast_pattern:
        return fast_sample_sequence(model, context, length, temperature=temperature, top_k=top_k, top_p=top_p,
                                    device=device)
    else:
        return sample_sequence(model, context, length, n_ctx, tokenizer=tokenizer, temperature=temperature, top_k=top_k, top_p=top_p,
                               repitition_penalty=repitition_penalty, device=device)

你可能感兴趣的:(AIGC,NLP,深度学习,自然语言处理,人工智能)