定义1-1:设 E E E 为向量空间, R \mathbb{R} R 为实数域。若映射
∥ ⋅ ∥ : E → R : x ↦ ∥ x ∥ \begin{equation*} \lVert\cdot\rVert:~E\rightarrow\mathbb{R}:~x\mapsto\lVert{x}\rVert \end{equation*} ∥⋅∥: E→R: x↦∥x∥
对 ∀ x , y ∈ E ; λ ∈ R \forall~x,y\in{E};~\lambda\in\mathbb{R} ∀ x,y∈E; λ∈R 满足
~~~ 1) 正定性: ∥ x ∥ ⩾ 0 ~\lVert{x}\rVert\geqslant0 ∥x∥⩾0 ,当且仅当 x = 0 x=0 x=0 时取等号;
~~~ 2) 正齐次性: ∥ λ x ∥ = ∣ λ ∣ ⋅ ∥ x ∥ ~\lVert{\lambda x}\rVert=\lvert{\lambda}\rvert\cdot\lVert{x}\rVert ∥λx∥=∣λ∣⋅∥x∥;
~~~ 3) 三角不等式: ∥ x + y ∥ ⩽ ∥ x ∥ + ∥ y ∥ ~\lVert{x+y}\rVert\leqslant\lVert{x}\rVert+\lVert{y}\rVert ∥x+y∥⩽∥x∥+∥y∥;
则将其称为范数,为区分定义在不同向量空间上的范数,也记作 ∥ ⋅ ∥ E \lVert\cdot\rVert_E ∥⋅∥E,而将 ( E , ∥ ⋅ ∥ ) (E,\lVert{\cdot}\rVert) (E,∥⋅∥) 称为赋范线性空间。
定理1-1:范数 ∥ ⋅ ∥ \lVert{\cdot}\rVert ∥⋅∥ 是一个凸函数,即
∥ λ x + ( 1 − λ ) y ∥ ⩽ λ ∥ x ∥ + ( 1 − λ ) ∥ y ∥ , ∀ x , y ∈ E ; λ ∈ [ 0 , 1 ] \begin{equation} \lVert{\lambda x+(1-\lambda)y}\rVert\leqslant\lambda\lVert{x}\rVert+(1-\lambda)\lVert{y}\rVert ,\qquad\forall~x,y\in{E};~\lambda\in[0,1] \end{equation} ∥λx+(1−λ)y∥⩽λ∥x∥+(1−λ)∥y∥,∀ x,y∈E; λ∈[0,1]
证明:由范数定义中的三角不等式:
∥ λ x + ( 1 − λ ) y ∥ ⩽ ∥ λ x ∥ + ∥ ( 1 − λ ) y ∥ = ∣ λ ∣ ⋅ ∥ x ∥ + ∣ 1 − λ ∣ ⋅ ∥ y ∥ = λ ∥ x ∥ + ( 1 − λ ) ∥ y ∥ (证毕) \begin{align*} \lVert{\lambda x+(1-\lambda)y}\rVert &\leqslant\lVert{\lambda x}\rVert+\lVert(1-\lambda){y}\rVert \\[3mm] &=|\lambda|\cdot\lVert{x}\rVert+|1-\lambda|\cdot\lVert{y}\rVert \\[3mm] &=\lambda\lVert{x}\rVert+(1-\lambda)\lVert{y}\rVert \qquad\qquad\text{(证毕)} \end{align*} ∥λx+(1−λ)y∥⩽∥λx∥+∥(1−λ)y∥=∣λ∣⋅∥x∥+∣1−λ∣⋅∥y∥=λ∥x∥+(1−λ)∥y∥(证毕)
定理1-2:定义在向量空间 E E E 上的范数 ∥ ⋅ ∥ \lVert{\cdot}\rVert ∥⋅∥ 满足不等式:
∣ ∣ ∣ x ∣ ∣ − ∣ ∣ y ∣ ∣ ∣ ≤ ∣ ∣ x ± y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ , x , y ∈ E \begin{equation} \big\lvert~||{x}||-||{y}||~\big\rvert\le||{x}\pm{y}||\le||{x}||+||{y}|| ,\qquad x,y\in E \end{equation} ∣∣x∣∣−∣∣y∣∣ ≤∣∣x±y∣∣≤∣∣x∣∣+∣∣y∣∣,x,y∈E
证明:由三角不等式:
{ ∣ ∣ x − y ∣ ∣ + ∣ ∣ y ∣ ∣ ≥ ∣ ∣ x ∣ ∣ ⟹ ∣ ∣ x − y ∣ ∣ ≥ ∣ ∣ x ∣ ∣ − ∣ ∣ y ∣ ∣ ∣ ∣ x − y ∣ ∣ + ∣ ∣ x ∣ ∣ = ∣ ∣ y − x ∣ ∣ + ∣ ∣ x ∣ ∣ ≥ ∣ ∣ y ∣ ∣ ⟹ ∣ ∣ x − y ∣ ∣ ≥ ∣ ∣ y ∣ ∣ − ∣ ∣ x ∣ ∣ \begin{cases} ||{x}-{y}||+||{y}||\ge||{x}||\Longrightarrow ||{x}-{y}||\ge||{x}||-||{y}|| \\[5mm] ||{x}-{y}||+||{x}||=||{y}-{x}||+||{x}||\ge||{y}||\Longrightarrow ||{x}-{y}||\ge||{y}||-||{x}|| \end{cases} ⎩ ⎨ ⎧∣∣x−y∣∣+∣∣y∣∣≥∣∣x∣∣⟹∣∣x−y∣∣≥∣∣x∣∣−∣∣y∣∣∣∣x−y∣∣+∣∣x∣∣=∣∣y−x∣∣+∣∣x∣∣≥∣∣y∣∣⟹∣∣x−y∣∣≥∣∣y∣∣−∣∣x∣∣故有:
∣ ∣ ∣ x ∣ ∣ − ∣ ∣ y ∣ ∣ ∣ ≤ ∣ ∣ x − y ∣ ∣ \begin{equation*} \big\lvert~||{x}||-||{y}||~\big\rvert\le||{x}-{y}|| \end{equation*} ∣∣x∣∣−∣∣y∣∣ ≤∣∣x−y∣∣又
∣ ∣ x − y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ − y ∣ ∣ = ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ (证毕) \begin{equation*} ||{x}-{y}||\le||x||+||-y||=||x||+||y||\qquad\text{(证毕)} \end{equation*} ∣∣x−y∣∣≤∣∣x∣∣+∣∣−y∣∣=∣∣x∣∣+∣∣y∣∣(证毕)
例 1 1 1:定义在 实数空间 R \mathbb{R} R 上的范数 :
∥ x ∥ = ∣ x ∣ , x ∈ R \lVert{x}\rVert=|x|,\qquad x\in\mathbb{R} ∥x∥=∣x∣,x∈R容易验证上述定义是满足范数的三点要求的。
例 2 2 2:定义在 n n n 维 Euclidean 空间 R n \mathbb{R}^n Rn
R n = { x = ( x 1 , x 2 , ⋯ , x n ) ∣ x i ∈ R , 1 = 1 , 2 , ⋯ , n } \begin{equation*} \mathbb{R}^n=\bigg\{x=(x_1,x_2,\cdots,x_n)\bigg|x_i\in\mathbb{R},~1=1,2,\cdots,n\bigg\} \end{equation*} Rn={x=(x1,x2,⋯,xn) xi∈R, 1=1,2,⋯,n}上的 p p p-范数:
∣ ∣ x ∣ ∣ p ≜ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p , x ∈ R n ; p ∈ [ 1 , ∞ ) \begin{equation} ||{x}||_{p}\triangleq\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} ,\qquad x\in\mathbb{R}^n~;~p\in[1,\infty) \end{equation} ∣∣x∣∣p≜(i=1∑n∣xi∣p)p1,x∈Rn ; p∈[1,∞)
特比地,
{ 1 -范数: ∣ ∣ x ∣ ∣ 1 ≜ ∑ i = 1 n ∣ x i ∣ 2 -范数(欧式范数): ∣ ∣ x ∣ ∣ 2 ≜ ∑ i = 1 n x i 2 ∞ -范数(最大范数): ∣ ∣ x ∣ ∣ ∞ ≜ max 1 ≤ i ≤ n ∣ x i ∣ \begin{cases} \text{$1$-范数:} &||{x}||_{1}\triangleq \displaystyle{\sum_{i=1}^n}~|x_i| \\[6mm] \text{$2$-范数(欧式范数):} &||{x}||_{2}\triangleq \sqrt{\displaystyle{\sum_{i=1}^n}~x_i^2}\\[6mm] \text{$\infty$-范数(最大范数):}&||{x}||_{\infty}\triangleq \max\limits_{1\le i\le n}~|x_i| \end{cases} ⎩ ⎨ ⎧1-范数:2-范数(欧式范数):∞-范数(最大范数):∣∣x∣∣1≜i=1∑n ∣xi∣∣∣x∣∣2≜i=1∑n xi2∣∣x∣∣∞≜1≤i≤nmax ∣xi∣
证明:先验证上述“范数”的定义满足范数的三点要求 :
1) 正定性 :
∣ ∣ x ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ≥ 0 ||{x}||_{p}=\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}\ge0 ∣∣x∣∣p=(i=1∑n∣xi∣p)p1≥0上述不等式取等号时,当且仅当
∣ x i ∣ = 0 ( i = 1 , 2 , … , n ) ⟺ x = 0 |x_i|=0\ (i=1,2,\dots,n)\Longleftrightarrow {x}=0 ∣xi∣=0 (i=1,2,…,n)⟺x=0 2)正齐次性 :
∣ ∣ λ x ∣ ∣ p = ( ∑ i = 1 n ( ∣ λ ∣ ⋅ ∣ x i ∣ ) p ) 1 p = ∣ λ ∣ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p = ∣ λ ∣ ⋅ ∣ ∣ x ∣ ∣ p ||\lambda{x}||_{p}=\left(\sum_{i=1}^n (|\lambda|\cdot|x_i|)^p\right)^{\frac{1}{p}}=|\lambda|\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}=|\lambda|\cdot||{x}||_{p} ∣∣λx∣∣p=(i=1∑n(∣λ∣⋅∣xi∣)p)p1=∣λ∣(i=1∑n∣xi∣p)p1=∣λ∣⋅∣∣x∣∣p3)三角不等式:
∑ i = 1 n ∣ x i + y i ∣ p = ∑ i = 1 n ∣ x i + y i ∣ p − 1 ∣ x i + y i ∣ ≤ ∑ i = 1 n ∣ x i + y i ∣ p − 1 ( ∣ x i ∣ + ∣ y i ∣ ) = ∑ i = 1 n ∣ x i + y i ∣ p − 1 ∣ x i ∣ + ∑ i = 1 n ∣ x i + y i ∣ p − 1 ∣ y i ∣ ≤ [ ∑ i = 1 n ∣ x i + y i ∣ q ( p − 1 ) ] 1 q ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + [ ∑ i = 1 n ∣ x i + y i ∣ q ( p − 1 ) ] 1 q ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ( p q = p q − q ; p , q > 1 ) = [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] [ ∑ i = 1 n ∣ x i + y i ∣ q ( p − 1 ) ] 1 q = [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] [ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 q \begin{aligned} & \quad\sum_{i=1}^n |x_i+y_i|^p \\\\ & =\sum_{i=1}^n |x_i+y_i|^{p-1}|x_i+y_i| \\\\ & \le\sum_{i=1}^n |x_i+y_i|^{p-1}(|x_i|+|y_i|) \\\\ & =\sum_{i=1}^n |x_i+y_i|^{p-1}|x_i|+\sum_{i=1}^n |x_i+y_i|^{p-1}|y_i| \\\\ & \le\left[\sum_{i=1}^n |x_i+y_i|^{q(p-1)}\right]^{\frac{1}{q}}\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left[\sum_{i=1}^n |x_i+y_i|^{q(p-1)}\right]^{\frac{1}{q}}\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}} (pq=pq-q;p,q>1) \\\\ & =\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right]\left[\sum_{i=1}^n |x_i+y_i|^{q(p-1)}\right]^{\frac{1}{q}} \\\\ & =\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right]\left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{\frac{1}{q}} \end{aligned} i=1∑n∣xi+yi∣p=i=1∑n∣xi+yi∣p−1∣xi+yi∣≤i=1∑n∣xi+yi∣p−1(∣xi∣+∣yi∣)=i=1∑n∣xi+yi∣p−1∣xi∣+i=1∑n∣xi+yi∣p−1∣yi∣≤[i=1∑n∣xi+yi∣q(p−1)]q1(i=1∑n∣xi∣p)p1+[i=1∑n∣xi+yi∣q(p−1)]q1(i=1∑n∣yi∣p)p1(pq=pq−q;p,q>1)= (i=1∑n∣xi∣p)p1+(i=1∑n∣yi∣p)p1 [i=1∑n∣xi+yi∣q(p−1)]q1= (i=1∑n∣xi∣p)p1+(i=1∑n∣yi∣p)p1 [i=1∑n∣xi+yi∣p]q1上述证明过程前后应用了绝对值不等式与Holder不等式,进一步:
[ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 − 1 q = [ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 p ≤ [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] ( p > 1 ) \left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{1-\frac{1}{q}} =\left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{\frac{1}{p}} \le\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right](p>1) [i=1∑n∣xi+yi∣p]1−q1=[i=1∑n∣xi+yi∣p]p1≤ (i=1∑n∣xi∣p)p1+(i=1∑n∣yi∣p)p1 (p>1)当 p = 1 p=1 p=1 时由绝对不等式知上述不等式同样成立,综上得证Minkowski不等式(闵可夫斯基不等式):
[ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 p ≤ [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] ( p ≥ 1 ) \left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{\frac{1}{p}} \le\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right](p\ge1) [i=1∑n∣xi+yi∣p]p1≤ (i=1∑n∣xi∣p)p1+(i=1∑n∣yi∣p)p1 (p≥1)即,
∣ ∣ x + y ∣ ∣ p ≤ ∣ ∣ x ∣ ∣ p + ∣ ∣ y ∣ ∣ p ||{x}+{y}||_p\le||{x}||_p+||{y}||_p ∣∣x+y∣∣p≤∣∣x∣∣p+∣∣y∣∣p 最后说明,当 p → ∞ p\rightarrow\infty p→∞ 时, p − p- p−范数满足最大范数的定义。采用夹逼定理求极限,由于
0 ≤ max 1 ≤ i ≤ n ∣ x i ∣ p ≤ ∑ i = 1 n ∣ x i ∣ p ≤ n ( max 1 ≤ i ≤ n ∣ x i ∣ p ) 0\le\max\limits_{1\le i\le n}|x_i|^p \le\sum_{i=1}^n |x_i|^p\le n\left(\max\limits_{1\le i\le n}|x_i|^p\right) 0≤1≤i≤nmax∣xi∣p≤i=1∑n∣xi∣p≤n(1≤i≤nmax∣xi∣p)又
{ lim p → ∞ ( max 1 ≤ i ≤ n ∣ x i ∣ p ) 1 p = max 1 ≤ i ≤ n ∣ x i ∣ lim p → ∞ [ n ( max 1 ≤ i ≤ n ∣ x i ∣ p ) ] 1 p = max 1 ≤ i ≤ n ∣ x i ∣ lim p → ∞ n 1 p = max 1 ≤ i ≤ n ∣ x i ∣ \begin{cases} \displaystyle{\lim_{p\rightarrow\infty}}\left(\max\limits_{1\le i\le n}|x_i|^p\right)^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i|\\\\ \displaystyle{\lim_{p\rightarrow\infty}}\left[n\left(\max\limits_{1\le i\le n}|x_i|^p\right)\right]^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i|\lim_{p\rightarrow\infty}n^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i| \end{cases} ⎩ ⎨ ⎧p→∞lim(1≤i≤nmax∣xi∣p)p1=1≤i≤nmax∣xi∣p→∞lim[n(1≤i≤nmax∣xi∣p)]p1=1≤i≤nmax∣xi∣p→∞limnp1=1≤i≤nmax∣xi∣故
∣ ∣ x ∣ ∣ ∞ = lim p → ∞ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p = max 1 ≤ i ≤ n ∣ x i ∣ (证毕) ||{x}||_{\infty}=\lim_{p\rightarrow\infty}\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i| \qquad\qquad\text{(证毕)} ∣∣x∣∣∞=p→∞lim(i=1∑n∣xi∣p)p1=1≤i≤nmax∣xi∣(证毕)
定义3-1:设 N ( E ) \mathcal{N}(E) N(E) 为所有定义在向量空间 E E E 上的范数构成的集合,对于 ∥ ⋅ ∥ , ∥ ⋅ ∥ × ∈ N ( E ) \lVert\cdot\rVert,~\lVert\cdot\rVert^\times\in\mathcal{N}(E) ∥⋅∥, ∥⋅∥×∈N(E),若
∃ α , β ∈ R + , s . t . α ∥ x ∥ × ⩽ ∥ x ∥ ⩽ β ∥ x ∥ × , f o r ∀ x ∈ E \begin{equation*} \exist~\alpha,\beta\in\mathbb{R}^+,~s.t.~ \alpha\lVert{x}\rVert^\times \leqslant \lVert{x}\rVert \leqslant \beta\lVert{x}\rVert^\times ,~for~\forall~x\in{E} \end{equation*} ∃ α,β∈R+, s.t. α∥x∥×⩽∥x∥⩽β∥x∥×, for ∀ x∈E则称 范数 ∥ ⋅ ∥ \lVert\cdot\rVert ∥⋅∥与 ∥ ⋅ ∥ × \lVert\cdot\rVert^\times ∥⋅∥×等价,记作: ∥ ⋅ ∥ ∼ ∥ ⋅ ∥ × \lVert\cdot\rVert\sim\lVert\cdot\rVert^\times ∥⋅∥∼∥⋅∥×。
定理3-1 :范数的等价具有传递性,即
∣ ∣ x ⃗ ∣ ∼ ∣ ∣ x ⃗ ∣ ∣ × , ∣ ∣ x ⃗ ∣ ∣ ∼ ∣ ∣ x ⃗ ∣ ∣ × × ⟹ ∣ ∣ x ∣ ∣ × ∼ ∣ ∣ x ∣ ∣ × × , ∀ x ∈ E \begin{equation*} ||\vec{x}|\sim||\vec{x}||^\times,~||\vec{x}||\sim||\vec{x}||^{\times\times} \Longrightarrow ||{x}||^\times\sim||{x}||^{\times\times} ,\qquad\forall~{x}\in{E} \end{equation*} ∣∣x∣∼∣∣x∣∣×, ∣∣x∣∣∼∣∣x∣∣××⟹∣∣x∣∣×∼∣∣x∣∣××,∀ x∈E
证明:若 ∣ ∣ x ⃗ ∣ ∣ ||\vec{x}|| ∣∣x∣∣ 与 ∣ ∣ x ⃗ ∣ ∣ × ||\vec{x}||^\times ∣∣x∣∣× 等价,且 ∣ ∣ x ⃗ ∣ ∣ ||\vec{x}|| ∣∣x∣∣ 与 ∣ ∣ x ⃗ ∣ ∣ × × ||\vec{x}||^{\times\times} ∣∣x∣∣×× 等价,则 ∃ c i ∈ R , i = 1 , 2 , 3 , 4 \exist~c_i\in\mathbb{R},~i=1,2,3,4 ∃ ci∈R, i=1,2,3,4 使得 :
{ c 1 ∣ ∣ x ∣ ∣ ≤ ∣ ∣ x ∣ ∣ × ≤ c 2 ∣ ∣ x ∣ ∣ c 3 ∣ ∣ x ⃗ ∣ ∣ × × ≤ ∣ ∣ x ∣ ∣ ≤ c 4 ∣ ∣ x ⃗ ∣ × × , ∀ x ∈ E \begin{cases} \ c_1||{x}||\le||{x}||^\times\le c_2||{x}||\\[4mm] \ c_3||\vec{x}||^{\times\times}\le||{x}||\le c_4||\vec{x}|^{\times\times} ,\qquad\forall~{x}\in{E} \end{cases} ⎩ ⎨ ⎧ c1∣∣x∣∣≤∣∣x∣∣×≤c2∣∣x∣∣ c3∣∣x∣∣××≤∣∣x∣∣≤c4∣∣x∣××,∀ x∈E那么,
c 1 c 3 ∣ ∣ x ∣ ∣ × × ≤ ∣ ∣ x ∣ ∣ × ≤ c 2 c 4 ∣ ∣ x ⃗ ∣ ∣ × × , ∀ x ∈ E c_1c_3||{x}||^{\times\times}\le||{x}||^\times\le c_2c_4||\vec{x}||^{\times\times} ,\qquad\forall~{x}\in{E} c1c3∣∣x∣∣××≤∣∣x∣∣×≤c2c4∣∣x∣∣××,∀ x∈E故 ∣ ∣ x ∣ ∣ × ||{x}||^\times ∣∣x∣∣× 与 ∣ ∣ x ∣ ∣ × × ||{x}||^{\times\times} ∣∣x∣∣××等价。
定理3-2:定义在 R n \mathbb{R}^n Rn 上的 1 − 1- 1−范数、 2 − 2- 2−范数、 ∞ − \infty- ∞−范数间满足:
∥ x ∥ ∞ ⩽ ∥ x ∥ 2 ⩽ ∥ x ∥ 1 ⩽ n ∥ x ∥ ∞ , ∀ x ∈ R n \begin{equation} \lVert{x}\rVert_\infty \leqslant \lVert{x}\rVert_2 \leqslant \lVert{x}\rVert_1 \leqslant n\lVert{x}\rVert_\infty ,~\forall~x\in\mathbb{R}^n \end{equation} ∥x∥∞⩽∥x∥2⩽∥x∥1⩽n∥x∥∞, ∀ x∈Rn故
∥ x ∥ 1 ∼ ∥ x ∥ 2 ∼ ∥ x ∥ ∞ \lVert{x}\rVert_1\sim\lVert{x}\rVert_2\sim\lVert{x}\rVert_\infty ∥x∥1∼∥x∥2∼∥x∥∞
证明:显然
max 1 ≤ i ≤ n ∣ x i ∣ ≤ ∑ i = 1 n ∣ x i ∣ ≤ n ( max 1 ≤ i ≤ n ∣ x i ∣ ) ⟹ ∥ x ∥ ∞ ⩽ ∥ x ∥ 1 ⩽ n ∥ x ∥ ∞ \max\limits_{1\le i\le n}|x_i| \le\sum_{i=1}^n |x_i|\le n\left(\max\limits_{1\le i\le n}|x_i|\right) \Longrightarrow \lVert{x}\rVert_\infty\leqslant\lVert{x}\rVert_1\leqslant n\lVert{x}\rVert_\infty 1≤i≤nmax∣xi∣≤i=1∑n∣xi∣≤n(1≤i≤nmax∣xi∣)⟹∥x∥∞⩽∥x∥1⩽n∥x∥∞又
x 1 2 + x 2 2 + ⋯ + x N 2 ⩾ ( max 1 ≤ i ≤ n ∣ x i ∣ ) 2 = max 1 ≤ i ≤ n ∣ x i ∣ ⟹ ∥ x ∥ ∞ ⩽ ∥ x ∥ 2 \sqrt{x_1^2+x_2^2+\dots+x_N^2}\geqslant\sqrt{\left(\max\limits_{1\le i\le n}|x_i| \right)^2}=\max\limits_{1\le i\le n}|x_i| \Longrightarrow \lVert{x}\rVert_\infty\leqslant\lVert{x}\rVert_2 x12+x22+⋯+xN2⩾(1≤i≤nmax∣xi∣)2=1≤i≤nmax∣xi∣⟹∥x∥∞⩽∥x∥2且根据 Cauchy-Bunjakovski 不等式(Cauchy–Schwarz 不等式)可得
x 1 2 + x 2 2 + ⋯ + x N 2 ≤ ( ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x N ∣ ) 2 ⟹ ∣ ∣ x ∣ ∣ 2 ⩽ ∣ ∣ x ∣ ∣ 1 (证毕) x_1^2+x_2^2+\dots+x_N^2\le(|x_1|+|x_2|+\dots+|x_N|)^2 \Longrightarrow ||{x}||_2\leqslant||{x}||_1 \qquad\text{(证毕)} x12+x22+⋯+xN2≤(∣x1∣+∣x2∣+⋯+∣xN∣)2⟹∣∣x∣∣2⩽∣∣x∣∣1(证毕)
定义4-1:设 S S S 是非空集合(不一定是向量空间),若映射
d : S × S → R : ( x , y ) ↦ d ( x , y ) \begin{equation*} d:~S\times S\rightarrow\mathbb{R}:~(x,y)\mapsto{d(x,y)} \end{equation*} d: S×S→R: (x,y)↦d(x,y)满足:
~~~ 1) 正定性: d ( x , y ) ⩾ 0 ~d(x,y)\geqslant0 d(x,y)⩾0 ,当且仅当 x = y x=y x=y 时取等号;
~~~ 2) 对称性: d ( x , y ) = d ( y , x ) ~d(x,y)=d(y,x) d(x,y)=d(y,x);
~~~ 3) 三点不等式: d ( x , y ) ⩽ d ( x , z ) + d ( z , y ) ~d(x,y)\leqslant d(x,z)+d(z,y) d(x,y)⩽d(x,z)+d(z,y).
则称 d ( x , y ) d(x,y) d(x,y) 为 x x x 到 y y y 的距离,并将 ( S , d ) (S,d) (S,d) 称为度量空间。
定理4-1:对于赋范向量空间 ( E , ∥ ⋅ ∥ ) (E,\lVert\cdot\rVert) (E,∥⋅∥),若取
d ( x , y ) ≜ ∥ x − y ∥ , ∀ x , y ∈ E \begin{equation} d(x,y)\triangleq\lVert{x-y}\rVert,\qquad\forall~x,y\in{E} \end{equation} d(x,y)≜∥x−y∥,∀ x,y∈E则在向量空间 E E E 上定义了距离 d ( x , y ) d(x,y) d(x,y),即赋范线性空间可视为度量空间,并将上式定义的 d ( x , y ) d(x,y) d(x,y) 称为由范数 ∥ ⋅ ∥ \lVert\cdot\rVert ∥⋅∥ 导出的距离。由范数 ∥ ⋅ ∥ \lVert\cdot\rVert ∥⋅∥ 导出的距离 d ( x , y ) d(x,y) d(x,y) 满足:
{ d ( x − y , 0 ) = ∣ ∣ ( x − y ) − 0 ∣ ∣ = ∣ ∣ x − y ∣ ∣ = d ( x , y ) d ( λ x , 0 ) = ∣ ∣ λ x − 0 ∣ ∣ = ∣ ∣ λ x ∣ ∣ = ∣ λ ∣ ⋅ ∣ ∣ x − 0 ∣ ∣ = ∣ λ ∣ d ( x , 0 ) ( ∀ x , y ∈ E ; λ ∈ R ) \begin{cases} d(x-y,0)=||(x-y)-0||=||x-y||=d(x,y)\\[4mm] d(\lambda x,0)=||\lambda x-0||=||\lambda x||=|\lambda|\cdot||x-0||=|\lambda|~d(x,0) \quad(~\forall~x,y\in E;~\lambda\in\mathbb{R}) \end{cases} ⎩ ⎨ ⎧d(x−y,0)=∣∣(x−y)−0∣∣=∣∣x−y∣∣=d(x,y)d(λx,0)=∣∣λx−0∣∣=∣∣λx∣∣=∣λ∣⋅∣∣x−0∣∣=∣λ∣ d(x,0)( ∀ x,y∈E; λ∈R)
证明:验证给出的距离取法是否满足距离的定义 ,对 ∀ x , y , z ∈ E \forall~x,y,z\in{E} ∀ x,y,z∈E
1)正定性: d ( x , y ) = ∣ ∣ x − y ∣ ∣ ≥ 0 , (当且仅当 x − y = 0 ⟹ x = y 时取等号) \begin{equation*} d(x,y)=||x-y||\ge0,\quad\text{(当且仅当 $x-y=0\Longrightarrow x=y$ 时取等号)} \end{equation*} d(x,y)=∣∣x−y∣∣≥0,(当且仅当 x−y=0⟹x=y 时取等号)2)对称性: d ( x , y ) = ∣ ∣ x − y ∣ ∣ = ∣ ∣ − ( y − x ) ∣ ∣ = ∣ ∣ y − x ∣ ∣ = d ( y , x ) \begin{equation*} d(x,y)=||x-y||=||-(y-x)||=||y-x||=d(y,x) \end{equation*} d(x,y)=∣∣x−y∣∣=∣∣−(y−x)∣∣=∣∣y−x∣∣=d(y,x)3)三点不等式: d ( x , z ) + d ( z , y ) = ∣ ∣ x − z ∣ ∣ + ∣ ∣ z − y ∣ ∣ ≥ ∣ ∣ ( x − z ) + ( z − y ) ∣ ∣ = ∣ ∣ x − y ∣ ∣ = d ( x , y ) (证毕) \begin{equation*} d(x,z)+d(z,y)=||x-z||+||z-y||\ge||(x-z)+(z-y)||=||x-y||=d(x,y) \qquad\text{(证毕)} \end{equation*} d(x,z)+d(z,y)=∣∣x−z∣∣+∣∣z−y∣∣≥∣∣(x−z)+(z−y)∣∣=∣∣x−y∣∣=d(x,y)(证毕)
定理4-2:设 ( S , d ) (S,d) (S,d) 为定义了距离的线性空间,若距离 d d d 满足:
{ d ( x − y , 0 ) = d ( x , y ) d ( λ x , 0 ) = ∣ λ ∣ d ( x , 0 ) ( ∀ x , y ∈ S ; λ ∈ R ) \begin{cases} d(x-y,0)=d(x,y)\\[4mm] d(\lambda x,0)=|\lambda|~d(x,0) \quad(~\forall~x,y\in S;~\lambda\in\mathbb{R}) \end{cases} ⎩ ⎨ ⎧d(x−y,0)=d(x,y)d(λx,0)=∣λ∣ d(x,0)( ∀ x,y∈S; λ∈R)则可以取
∣ ∣ x ∣ ∣ ≜ d ( x , 0 ) , x ∈ S \begin{equation*} ||x||\triangleq d(x,0),\qquad x\in S \end{equation*} ∣∣x∣∣≜d(x,0),x∈S使得定义出的 ∥ ⋅ ∥ \lVert\cdot\rVert ∥⋅∥ 为范数,并且使得 d d d 是由 ∥ ⋅ ∥ \lVert\cdot\rVert ∥⋅∥ 导出的距离。
证明:验证给出的范数取法是否满足范数的定义 ,对 ∀ x , y ∈ S , λ ∈ R \forall~x,y\in{S},~\lambda\in\mathbb{R} ∀ x,y∈S, λ∈R
1)正定性: ∣ ∣ x ∣ ∣ = d ( x , 0 ) ≥ 0 , (当且仅当 x = 0 时取等号) \begin{equation*} ||x||=d(x,0)\ge0,\quad\text{(当且仅当 $x=0$ 时取等号)} \end{equation*} ∣∣x∣∣=d(x,0)≥0,(当且仅当 x=0 时取等号)2)正齐次性: ∣ ∣ λ x ∣ ∣ = d ( λ x , 0 ) = ∣ λ ∣ d ( x , 0 ) = ∣ λ ∣ ⋅ ∣ ∣ x ∣ ∣ \begin{equation*} ||\lambda x||=d(\lambda x,0)=|\lambda|~d(x,0)=|\lambda|\cdot||x|| \end{equation*} ∣∣λx∣∣=d(λx,0)=∣λ∣ d(x,0)=∣λ∣⋅∣∣x∣∣3)三角不等式: ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ = d ( x , 0 ) + d ( y , 0 ) = d ( x , 0 ) + d ( − y , 0 ) = d ( x , 0 ) + d ( 0 , − y ) ≥ d ( x , − y ) = d ( x + y , 0 ) = ∣ ∣ x + y ∣ ∣ \begin{align*} ||x||+||y||&=d(x,0)+d(y,0)=d(x,0)+d(-y,0) \\[3mm] &=d(x,0)+d(0,-y)\ge d(x,-y)=d(x+y,0)=||x+y|| \end{align*} ∣∣x∣∣+∣∣y∣∣=d(x,0)+d(y,0)=d(x,0)+d(−y,0)=d(x,0)+d(0,−y)≥d(x,−y)=d(x+y,0)=∣∣x+y∣∣故所取的范数形式满足范数的定义,即 S S S 可视为赋范线性空间。最后说明 d d d 是由 ∥ ⋅ ∥ \lVert\cdot\rVert ∥⋅∥ 导出的距离:
∀ x , y ∈ S , d ( x , y ) = ∣ ∣ x − y ∣ ∣ = d ( x − y , 0 ) (证毕) \forall~x,y\in{S},\qquad d(x,y)=||x-y||=d(x-y,0)\qquad\text{(证毕)} ∀ x,y∈S,d(x,y)=∣∣x−y∣∣=d(x−y,0)(证毕)