- 为什么转行大模型行业?深度解析职业变革与技术红利
大模型入门教程
大模型学习语言模型人工智能AI大模型程序员大模型入门
引言2023年ChatGPT的爆发式发展,标志着AI大模型技术正式进入大众视野。这一技术不仅重塑了人工智能的边界,更催生了全新的职业赛道。从传统算法工程师到互联网从业者,越来越多的人开始将目光投向大模型领域。本文将深入探讨这一现象背后的核心动因,并结合行业现状、技术趋势与职业发展路径,为从业者提供系统性分析。一、行业变革:传统岗位萎缩与大模型崛起传统技术岗位的困境以推荐算法为例,随着移动互联网流量
- AI 大模型应用数据中心建设:高性能计算与存储架构
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、高性能计算、存储架构、分布式训练、GPU加速、数据管理1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,特别是深度学习模型的突破性进展,催生了一系列基于大规模数据训练的强大AI模型,例如GPT-3、BERT、DALL-E等。这些AI大模型在自然语言处理、计算机视觉、语音识别等领域展现出强大的应用潜力,但也对计算资源和数据存储提出了极高的要求。传统的计算架构难以满足AI大
- 人工智能直通车系列24【机器学习基础】(机器学习模型评估指标(回归))
浪九天
人工智能直通车开发语言python机器学习深度学习神经网络人工智能
目录机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)2.均方根误差(RootMeanSquaredError,RMSE)3.平均绝对误差(MeanAbsoluteError,MAE)4.决定系数(CoefficientofDetermination,R2)机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)详细解释均方误差是回归问
- 从零开始学机器学习——构建一个推荐web应用
努力的小雨
机器学习机器学习前端人工智能
首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns今天,我们终于将分类器这一章节学习完活了,和回归一样,最后一章节用来构建web应用程序,我们会回顾之前所学的知识点,并新增一个web应用用来让模型和用户交互。所以今天的主题是美食推荐。美食推荐Web应用程序首先,请不要担心,本章节并不会涉及过多的前端知识点。我们此次的学习重点在于机器学习本身,因此我们
- 使用FastAPI部署bge-base和bge-reranker
MoyiTech
fastapipython开发语言RAGrerank
最近在做RAG项目,会频繁使用到本地embedding模型和rerank模型,但是每次跑demo都要用10来秒加载模型,非常慢,所以就封装了接口用于直接调用importosimportnumpyasnpimportloggingimportuvicornimportdatetimefromfastapiimportFastAPI,Security,HTTPExceptionfromfastapi.
- AI大模型从入门到精通,2025终极指南!好卷啊,又不能躺平,只能悄悄卷你们了!
大模型教程
人工智能大模型训练LLM知识库大模型大模型入门大模型学习
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- 零信任架构
阿湯哥
架构
零信任架构(ZeroTrustArchitecture,ZTA)零信任架构是一种新型网络安全模型,核心理念是“永不信任,始终验证”(NeverTrust,AlwaysVerify)。它摒弃传统基于边界的安全防护(如防火墙隔离内外部网络),转而通过动态的、细粒度的访问控制,对所有用户、设备和数据流进行持续验证,最小化攻击面并防范内部威胁。一、零信任与传统安全模型的对比维度传统安全模型零信任模型信任基
- Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例在当今快节奏的金融市场中,自动化交易和预测模型成为了投资者和交易者的重要工具。Python以其强大的数据处理能力和丰富的机器学习库,成为了实现这些模型的首选语言。本文将带你了解如何使用XGBoost和LightGBM这两个流行的机器学习算法来
- AI大模型学习路线:从入门到精通的完整指南【2025最新】
AI大模型-大飞
人工智能学习大模型LLMAI程序员大模型学习
引言近年来,以GPT、BERT、LLaMA等为代表的AI大模型彻底改变了人工智能领域的技术格局。它们不仅在自然语言处理(NLP)任务中表现卓越,还在计算机视觉、多模态交互等领域展现出巨大潜力。本文旨在为开发者、研究者和技术爱好者提供一条清晰的学习路径,帮助读者逐步掌握大模型的核心技术并实现实际应用。一、基础阶段:构建知识体系数学与理论基础线性代数:矩阵运算、特征值与奇异值分解是大模型参数优化的基础
- 【sklearn 04】DNN、CNN、RNN
@金色海岸
sklearndnncnn
DNNDNN(DeepNeuralNetworks,深度神经网络)是一种相对浅层机器学习模型具有更多参数,需要更多数据进行训练的机器学习算法CNNCNN(convolutionalNeuralNetworks,卷积神经网络)是一种从局部特征开始学习并逐渐整合的神经网络。卷积神经网络通过卷积层来进行特征提取,通过池化层进行降维,相比较全连接的神经网络,卷积神经网络降低了模型复杂度,减少了模型的参数,
- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- 少样本数值型数据集 | 数据增强
蒜蓉趣多多
机器学习人工智能材料工程
对于小样本数字型数据集,数据增强的有效方法主要集中在创造新的样本、调整现有样本的特征、或者通过生成模型来模拟真实分布。下面是个人搜集到的方法及部分代码。希望对大家的科研/工作有所帮助!1.噪声注入(NoiseInjection)方法:在原始数据上添加少量的随机噪声,生成新的样本。噪声可以是高斯噪声、均匀分布噪声或其他分布的噪声。实现:对于每个特征,可以加上一个服从小均值和小方差的正态分布噪声,如X
- 第七篇:数据治理实践工具与资源
小技工丨
数据治理网络数据库大数据数据治理
1.数据治理实践工具与资源1.1数据治理成熟度评估工具数据治理成熟度评估是企业了解自身数据治理现状、识别改进机会的重要工具。通过系统化的评估,企业可以明确数据治理的发展阶段,制定有针对性的改进计划。1.1.1IBM数据治理成熟度评估模型IBM数据治理成熟度评估模型是业界广泛应用的评估工具之一,它从多个维度评估企业的数据治理成熟度。“数据被认为是推动企业增长和商业创新引擎的燃料。数据无疑被组织认定且
- 从零到精通:用go+vue语言打造高效多语言博客系统的完整指南
程序员爱钓鱼
golangvue.js开发语言
后端部分(Go)首先创建文章相关的数据模型packagemodelimport(“gorm.io/gorm”)//Article文章主表typeArticlestruct{gorm.ModelStatusuint8json:"status"gorm:"default:1"//状态:0-禁用1-启用Sortintjson:"sort"gorm:"default:0"//排序AuthorIduintj
- 嵌入式八股,状态机编程
skeete
单片机c语言
while(1){A();B();}假设裸机编程有这样一个程序,A的执行时间非常长,那么程序就会变得比较卡顿。状态机编程的根本思路在于讲一个A()拆分为多个小的函数,比如a1,a2,a3,分别执行这几个状态。使用switch语句和它配合,执行完a1就break,运行B,下一次再执行a2,再运行B。这样就能防止一个任务长时间阻塞。具体来说1.什么是状态机?状态机是一种数学模型,用于描述一个系统在不同
- 跨域视线估计的协同对比学习(重点针对局部对比学习解释)
阳光明媚大男孩
学习人工智能
跨域视线估计的协同对比学习1.问题表述在视线估计领域中,跨域问题是指当训练数据和测试数据来自不同的领域(如不同的个体、光照条件、拍摄设备等)时,模型性能会显著下降。这种性能下降主要是因为不同领域之间的差异导致模型难以泛化。为了解决这一问题,新方法(CrossGazeGeneralization,CGaG)旨在通过特征解耦的方式减少领域差异对视线估计的影响,从而提高模型在跨域情况下的准确性和稳定性。
- 大模型和数据要素赋能实体零售行业数字化转型建设和实施方案
优享智库
大模型数据要素数据治理数据仓库主数据零售
大模型和数据要素赋能实体零售行业数字化转型建设和实施方案更多参考公众号:优享智库引言项目背景与意义数字化转型目标与期望实施方案概述零售行业现状及挑战实体零售行业现状数字化转型面临的挑战市场需求与趋势分析大模型与数据要素赋能策略大模型技术及应用场景数据要素采集、整合与治理赋能策略制定与实施路径数字化转型关键技术与解决方案人工智能技术及应用大数据分析与挖掘技术云计算、物联网等技术支持定制化解决方案设计
- 网络华为HCIA+HCIP网络基础
ssr——ssss
华为网络
目录通信与网络基础网络类型和网络拓扑网络参考模型和标准协议VRP文件系统命令行试图使用快捷键网工基础命令文件系统基本配置命令通信与网络基础通信,是指人与人、人与物、物与物之间通过某种媒介和行为进行的信息传递与交流。网络通信,是指终端设备之间通过计算机网络进行的通信。交换机:距离终端用户最近的设备,用于终端用户接入网络、对数据帧进行交换等。路由器:网络层设备,可以在因特网中进行数据报文转发。路由器根
- 【大模型开发】大模型转换为 NCNN 格式并在 微信小程序 中进行调用
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习微信小程序小程序NCNN小程序调用大模型大模型部署大模型优化部署微信小程序
以下内容将介绍如何将大模型转换为NCNN格式并在微信小程序中进行调用。我们会从整体流程、模型转换工具、NCNNWebAssembly(WASM)编译与集成、小程序前端代码示例等方面进行详细讲解,并在最后给出优化方向与未来建议。目录背景与整体流程概述准备工作2.1常见模型格式与转换思路2.2环境与工具安装模型转换为NCNN格式3.1以ONNX模型为例3.2使用onnx2ncnn工具NCNN在微信小程
- 基于GPT架构的视频生成工具(VideoGPT)
deepdata_cn
视频生成音视频视频生成
VideoGPT是基于GPT架构的视频生成工具,支持从文本生成视频。最初,研究人员尝试将自然语言处理中的GPT架构思想引入视频处理领域,开始探索如何利用其强大的语言理解和生成能力来处理视频的时空信息。模型改进与创新:如VideoGPT+模型结合了先进的图像编码器和视频编码器,克服了传统方法在处理视频时的局限,在捕捉丰富空间细节和理解复杂时间动态上展现出卓越性能。iVideoGPT采用新颖的压缩to
- DeepSeek 在代码生成方面的优势解析
草莓屁屁我不吃
人工智能aichatgpt
在AI代码生成领域,DeepSeek通过其DeepSeek-Coder模型展现出强大的能力,与OpenAI的Codex、Meta的CodeLlama、Google的AlphaCode等国际领先模型同台竞争。文章将详细解析DeepSeek在代码生成方面的优势,包括模型架构、数据训练、优化策略、编程语言支持、推理效率等核心技术点。1.DeepSeek-Coder的模型架构优化DeepSeek-Code
- Google Gemini 大模型技术架构剖析
musicml
人工智能
▼最近直播超级多,预约保你有收获近期直播:《从原理到实践教你做出一个Gemini/ChatGPT》—1—Gemini技术架构剖析Google新的多模态模型家族Gemini,它在文本、图像、音频、视频等方面具有卓越的能力。Gemini系列包括Ultra、Pro和Nano三种尺寸,适用于从复杂的推理任务到设备内存受限的应用场景。GeminiUltra是最强大的模型,可在各种高度复杂的任务(包括推理和多
- Claude3.5到底强大在哪?
草莓屁屁我不吃
人工智能chatgpt
Claude3.5是Anthropic公司最新推出的Claude3.5Sonnet模型以其卓越的性能和广泛的应用前景,成为了业界关注的焦点。作为Claude3系列中的最新成员,Claude3.5Sonnet不仅在速度、成本、智能表现等多个方面实现了质的飞跃,还在视觉理解、代码生成、复杂指令执行等领域树立了新的行业标准,其技术优势在多个方面表现突出。文章将从技术角度详细分析Claude3.5的核心特
- 精选AI大模型读物:《从ChatGPT到AIGC:智能创作与应用赋能》——探索智能时代的创作力量
AGI大模型老王
人工智能chatgptAIGCAI大模型大模型
自2023年以来,AI聊天机器人ChatGPT火爆互联网,其颠覆性的使用体验重塑了人们对于AI的认知。而ChatGPT背后的技术―AIGC也引起了互联网圈的关注,打开了人们对AI应用的想象空间。本书从ChatGPT入手,以AIGC为中心,对AIGC的理论知识、应用场景、未来发展等内容进行了全面的梳理。首先,本书对AIGC的概念、技术构成、产业生态、市场现状等进行了讲解,以便读者对AIGC形成一个清
- 案例驱动的 IT 团队管理:创新与突破之路:第一章 重构 IT 团队管理:从传统到创新-2.1.2关键岗位胜任力模型设计
言析数智
案例驱动的IT团队管理:创新与突破之路IT项目管理关键岗位胜任力模型
点击关注不迷路点击关注不迷路点击关注不迷路文章大纲第二章团队组建:从人才画像到生态构建-2.1.2关键岗位胜任力模型设计一、胜任力模型的核心理念与价值1.**传统选才vs胜任力驱动选才**2.**冰山模型:胜任力的分层结构**二、胜任力模型构建的六步法1.**战略对齐与岗位分析**2.**行为事件访谈(BEI)**3.**数据建模与验证**4.**模型分层与指标定义**5.**试点应用与迭代优化*
- 深入解析两大AI模型的架构与功能
草莓屁屁我不吃
人工智能chatgpt
在人工智能(AI)领域,自然语言处理(NLP)一直是研究的热点之一。随着技术的不断进步,我们见证了从简单的聊天机器人到复杂语言模型的演变。其中,Google的Gemini和OpenAI的ChatGPT作为两大代表性模型,各自在技术和应用上展现出了卓越的性能。本文将详细解析Gemini和ChatGPT的系统架构、功能特性及其背后的技术原理。Gemini模型详解技术背景与架构Gemini,顾名思义,意
- Vue 3 vs Vue 2:深入解析从性能优化到源码层面的进化
银之夏雪
vue.js性能优化前端
Vue.js是当今前端开发中最受欢迎的框架之一。随着Vue3的发布,它在性能优化、开发体验、响应式系统、构建工具和热更新等多个方面都带来了巨大提升。本文将深入剖析Vue3的进化,包括其源码实现方面的优化,如diff算法、静态标记、编译优化,以及Vue3在热更新、构建工具上的改进。1.性能提升:底层优化的革命1.1响应式系统的改进:从Object.defineProperty到ProxyVue2的响
- FireRedASR:精准识别普通话、方言和歌曲歌词!小红书开源工业级自动语音识别模型
蚝油菜花
每日AI项目与应用实例语音识别人工智能人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!微信公众号|搜一搜:蚝油菜花大家好,我是蚝油菜花,今天跟大家分享一下FireRedASR这个小红书开源的工业级自动语音识别模型。快速阅读FireRedASR是小红书开源的工业级自动语音识别模型,支持普通话、中文方言和英语。该模型在普通话ASR基准测试
- 展望 AIGC 前景:通义万相 2.1 与蓝耘智算平台共筑 AI 生产力高地
accurater
AIGC人工智能神经网络深度学习
喜欢可以到主页订阅专栏引言人工智能生成内容(AIGC)技术正在重塑内容创作、影视制作、广告设计等行业的底层逻辑。作为该领域的革命性技术代表,通义万相2.1凭借其开源特性、多模态生成能力和技术突破,成为全球视频生成模型的标杆。而蓝耘智算平台则通过高性能算力支持与分布式架构优化,为AIGC技术的规模化应用提供了基础设施保障。两者的协同不仅推动了AI生产力的跃迁,更开启了从技术研发到商业落地的全链条创新
- 文心一言提前免费,高性能大模型全面入局该咋看?
江瀚视野
人工智能机器人
3月16日,百度正式发布文心大模型4.5及文心大模型X1,在文心一言官网即可免费使用。这件事我们该怎么看?首先,从技术创新的角度来看,百度文心大模型4.5和X1的发布展示了百度在AI大模型领域的显著进步。文心大模型4.5作为首个原生多模态大模型,在多模态理解、文本和逻辑推理能力上的显著提升,使其在多项测试中表现优于GPT4.5,这体现了百度在AI技术研发上的深厚积累。同时,文心大模型X1作为深度思
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1