- 探秘开源项目 MapReduce:分布式计算的新篇章
褚知茉Jade
探秘开源项目MapReduce:分布式计算的新篇章去发现同类优质开源项目:https://gitcode.com/在大数据处理领域,一个名字始终熠熠生辉,那就是。这是一个由Google提出的并被广泛应用的编程模型,用于大规模数据集的并行计算。本文将带你深入了解这一开源实现的魅力,分析其技术原理,探讨它的应用场景,并揭示它独特的特性。项目简介该项目是ChubbyJiang对原始GoogleMapRe
- AIGC实战——Transformer模型
盼小辉丶
AIGCtransformer深度学习
AIGC实战——Transformer模型0.前言1.T52.GPT-3和GPT-43.ChatGPT小结系列链接0.前言我们在GPT(GenerativePre-trainedTransformer)一节所构建的GPT模型是一个解码器Transformer,它逐字符地生成文本字符串,并使用因果掩码只关注输入字符串中的前一个单词。另一些编码器Transformer,不使用因果掩码,而是关注整个输入
- 基于Python的CATIA V5二次开发实战:工程图视图批量重链接技术解析
Python×CATIA工业智造
python开发语言pycharmCATIA二次开发
引言在汽车、航空航天等制造领域,CATIAV5作为核心的CAD设计平台,其工程图模块的自动化处理能力直接影响设计效率。本文针对工程图视图与三维模型断链的常见问题,深入解析基于pycatia的二次开发解决方案,提供一套可批量重链接视图的Python实现代码。该方案已通过实际项目验证,支持CATIAR2020x~R2023x版本,可提升85%以上的视图维护效率。功能概述本工具核心功能为工程图视图的批量
- MapReduce:分布式并行编程的基石
JAZJD
mapreduce分布式大数据
目录概述分布式并行编程分布式并行编程模型分布式并行编程框架MapReduce模型简介Map和Reduce函数Map函数Map函数的输入和输出Map函数的常见操作Reduce函数Reduce函数的输入和输出Reduce函数的常见操作工作流程概述各个阶段1.输入分片2.Map阶段3.Shuffle阶段4.Reduce阶段MapReduce工作流程总结Shuffle过程详解1.分区(Partitioni
- 基于Python的微博舆情分析与可视化系统【附源码】
AI博士小张
python数据分析数据库
基于Python的微博舆情分析与可视化系统摘要研究背景及意义一、数据流程总体架构二、详细处理流程与代码实现1.数据采集模块2.数据清洗与预处理3.情感分析与特征工程4.舆情分析模型5.可视化呈现三、性能优化要点摘要基于Python的微博舆情分析与可视化系统旨在利用大数据和自然语言处理技术,实时抓取、分析微博平台上的用户言论,并通过可视化手段揭示舆情的动态演变规律。系统采用Python技术栈,结合网
- WebGPT: 基于浏览器辅助的问答系统,结合人类反馈优化答案质量
土豆.exe
人工智能AI人工智能算法机器学习
【摘要】本论文介绍了WebGPT,这是一种通过浏览器辅助问答系统来使用人类反馈进行训练和优化的模型。具体来说,该系统通过与基于文本的网络浏览环境互动,使模型能够搜索和导航网络,从而提高其回答长文本问题的能力。通过将任务设计为人类可以完成的任务,研究人员能够利用模仿学习和人类反馈来训练和优化模型。主要贡献包括:创建了一个基于文本的网络浏览环境,使得模型可以互动,从而改进了检索和合成。生成带有参考文献
- MapReduce:分布式计算的基石
Earth explosion
mapreduce大数据
MapReduce是一种用于处理和生成大数据集的编程模型,以及一个用于执行该模型的关联实现。它使得在大型商用硬件集群(数千台机器)上进行并行处理海量数据成为可能。本文将深入探讨MapReduce的核心概念、工作原理、应用场景以及一些高级主题。核心概念:分而治之MapReduce的核心思想是“分而治之”。它将复杂的计算任务分解成两个主要阶段:Map阶段和Reduce阶段。Map阶段:输入数据被分割成
- 《DeepSeek-V3:动态温度调节算法,开启推理新境界!》
人工智能深度学习
在人工智能领域不断探索的征程中,DeepSeek-V3以其卓越的创新技术,尤其是动态温度调节算法,成为了备受瞩目的焦点。这项算法犹如一把神奇的钥匙,巧妙地开启了推理速度与精度动态平衡的大门,为大语言模型的发展开辟了新的道路。温度,在大语言模型的世界里,是一个极为关键的参数,它掌控着模型输出的随机性。这一概念,脱胎于热力学,却在人工智能的领域中被赋予了全新的使命。当温度较低时,模型倾向于选择高概率词
- 【Hadoop】如何理解MapReduce?
2302_79952574
hadoopmapreduce数据库
MapReduce是一种用于处理大规模数据集的编程模型和计算框架。它的核心思想是将复杂的计算任务分解为两个简单的阶段:Map(映射)和Reduce(归约)。通过这种方式,MapReduce可以高效地并行处理海量数据。一.MapReduce的核心概念1.Map(映射):将输入数据分割成小块,并对每个小块进行初步处理。输出键值对(key-valuepairs),例如。2.Shuffle和Sort(洗牌
- 数字识别项目
不要天天开心
机器学习人工智能深度学习算法
集成算法·Bagging·随机森林构造树模型:由于二重随机性,使得每个树基本上都不会一样,最终的结果也会不一样。集成算法·Stacking·堆叠:很暴力,拿来一堆直接上(各种分类器都来了)·可以堆叠各种各样的分类器(KNN,SVM,RF等等)·分阶段:第一阶段得出各自结果,第二阶段再用前一阶段结果训练实现神经网络实例利用PyTorch内置函数mnist下载数据。·利用torchvision对数据进
- 多线程案例二 ------阻塞队列
wuyunhang123456
java中间件缓存
阻塞队列定义在普通队列先进先出的基础上做了扩展:1)线程安全的。2)具有阻塞的特性:a.如果针对一个已经满了的队列进行入队列,此时入队列操作就会阻塞,一直阻塞到队列有空位。b.如果针对一个已经空了的队列进行出队列,此时出队操作就会阻塞,一直阻塞到队列不空之后。阻塞队列应用基于阻塞队列的特性,可以实现“生产者消费者模型”,生产者消费者模型的作用:1)引入生产者消费者模型,就可以更好的做的“解耦合"(
- Redis的线程模型
IT小锅巴
redis数据库缓存
Redis的线程模型Redis的原子性是如何保证的?Redis是一个非常快的内存数据库,它的操作默认是原子性的,意思是每个操作要么完全成功,要么完全不做,中间不会被打断或停止。也就是说,每次操作要么完全按计划执行完,要么什么都不做,这样可以保证数据的一致性和完整性。Redis的原子性主要靠这几个机制:单线程模型:Redis每次只做一个操作,确保操作按顺序执行,不会被其他操作打断。事务机制(MULT
- RabbitMQ之交换机
CodePanda@GPF
RabbitMQrabbitmq分布式
文章目录1.交换机概念2.fanout交换机3.direct交换机4.topic交换机1.交换机概念RabbitMQ消息传递模型的核心思想是:生产者生产的消息从不会直接发送到队列。实际上,通常生产者甚至都不知道这些消息传递传递到了哪些队列中。相反,生产者只能将消息发送到交换机(exchange),交换机工作的内容非常简单,一方面它接收来自生产者的消息,另一方面将它们推入队列。交换机必须确切知道如何
- 设计高并发系统:从理论到实践
专业WP网站开发-Joyous
学习架构java系统架构
设计高并发系统:从理论到实践在现代互联网应用中,高并发系统设计成为了一个关键课题。随着用户数量的增长和业务需求的增加,高并发系统需要处理大量的请求,确保系统稳定、高效地运行。本文将深入探讨高并发系统的设计,从理论到实践,提供全面的技术指导。目录高并发系统概述系统架构设计核心技术与实现线程模型异步处理缓存策略数据库优化分布式系统设计消息队列与事件驱动负载均衡与反向代理性能测试与监控实际应用案例总结1
- 自我训练模型:通往未来的必经之路?
耶耶Norsea
网络杂烩人工智能
摘要在探讨是否唯有通过自我训练模型才能掌握未来的问题时,文章强调了底层技术的重要性。当前,许多人倾向于关注应用层的便捷性,却忽视了支撑这一切的根本——底层技术。将模型简单视为产品是一种短视行为,长远来看,理解并发展底层技术才是关键。只有全面把握从底层到应用层的技术链,才能真正引领未来的创新与发展。关键词自我训练模型,掌握未来,底层技术,应用层,模型产品一、技术层面的深入探讨1.1自我训练模型的技术
- 2024年最新PyTorch深度学习项目实战100例数据集_python 深度学习项目演练
2401_84585440
程序员深度学习pythonpytorch
前言最近很多订阅了《PyTorch深度学习项目实战100例》的用户私信咨询有些数据集下载不了以及一些文章中没有给出数据集链接,为了解决这个问题,专门开设了本篇文章,提供数据集下载链接,打包100例的所有数据集。本专栏适用人群:深度学习初学者,刚刚接触PyTorch的用户群体,专栏将具体讲解如何快速搭建深度学习模型用自己的数据集实现深度学习小项目,快速让新手小白能够对基于深度学习方法有个基本的框架认
- Mistral 发布 Mistral OCR,号称「世界上最好的 OCR 模型」
自不量力的A同学
ocr
Mistral发布的MistralOCR号称“世界上最好的OCR模型”,以下是对它的详细介绍:产品概述MistralOCR是一种光学字符识别API,以图像和PDF作为输入,可从有序交错的文本和图像中提取内容,能理解文档的每个元素,包括媒体、文本、表格、公式等,可与RAG系统结合,处理多模式文档。核心优势顶尖的复杂文档理解能力:可精准识别科学论文、技术文献中的图表、公式(含LaTeX)、表格及混合排
- Imagen原理与代码实例讲解
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Imagen原理与代码实例讲解1.背景介绍在人工智能领域中,图像生成一直是一个具有挑战性的任务。传统的计算机视觉模型通常专注于理解和分析现有图像,而生成全新的高质量图像则需要更高级的技术。随着深度学习技术的不断发展,生成式对抗网络(GenerativeAdversarialNetworks,GAN)等新型模型逐渐展现出了令人惊叹的图像生成能力。谷歌的Imagen就是一种基于大型视觉语言模型的全新图
- 使用DeepSeek来构建LangGraph Agent
乔巴先生24
人工智能python人机交互
随着DeepseekR1的发布,我们不得不把目光聚焦在这个能赶超多个顶流大模型的模型身上,它主要是其在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩OpenAIo1正式版。为了更好的了解它的性能,我们这篇文章来尝试用它来构建Agent。安装!pipinstall-qopenailangchainlanggraph
- DeepSeek Agent 企业应用
大势下的牛马
搭建本地gptDeepseekRAGAgent
DeepSeekAgent技术是基于深度求索(DeepSeek)大模型构建的智能代理系统,其核心技术架构与应用优势可从以下几个方面进行深度解析:一、核心技术架构混合专家模型(MoE)与架构优化DeepSeek的模型家族(如DeepSeekMoE、DeepSeek-V3)采用混合专家系统(MoE),通过动态激活不同专家模块提升计算效率。例如,DeepSeekMoE16B在保持较低激活参数(2.8B)
- MMLU 88.5分的海螺minimax-01能平替DeepSeek?程序员:建议再看看
surfirst
LLM人工智能评测
一、背景近期,国产海螺大模型minimax-text-01在AI领域引发广泛关注。这款模型在CoreAcademicBenchmarks上表现亮眼,多项指标名列前茅,甚至被一些自媒体誉为DeepSeek的平替选择。然而,模型的实际应用效果是否与学术评测相符?让我们一起深入探讨。二、minimax-text-01简介minimax-text-01是一个具有4560亿参数量的大规模语言模型,每个tok
- 《DeepSeek+Langchain落地实操:RAG知识增强检索和智能体实战开发》
AI周红伟
langchain
大数据与人工智能实战专家—周红伟老师法国科学院数据算法博士/曾任阿里人工智能专家/曾任马上消费金融风控负责人课程背景LangChain是一项旨在赋能开发人员利用语言模型构建端到端应用程序的强大框架。它的设计理念在于简化和加速利用大型语言模型(LLM)和对话模型构建应用程序的过程。这个框架提供了一套全面的工具、组件和接口,旨在简化基于大型语言模型和对话模型的应用程序开发过程。LangChain本质上
- PyTorch:Python深度学习框架使用详解
零 度°
pythonpython深度学习pytorch
PyTorch是一个开源的机器学习库,广泛用于计算机视觉和自然语言处理领域。它由Facebook的AI研究团队开发,因其动态计算图、易用性以及与Python的紧密集成而受到开发者的青睐。PyTorch的主要特点动态计算图:PyTorch的计算图在运行时构建,使得模型的修改和调试更加灵活。自动微分:自动计算梯度,简化了机器学习模型的训练过程。丰富的API:提供了丰富的神经网络层、函数和损失函数。跨平
- JSP开发案例教程【5.3】
BinaryStarXin
JSP开发案例教程java数据库开发语言javascriptHibernate和ORM访问MySQL
11.3.1Hibernate和ORM当使用一种面向对象的程序设计语言来进行应用开发时,从项目开始起一直采用面向对象分析、面向对象设计、面向对象编程,但到了持久层数据库访问时,又必须重返关系数据库的访问方式,这是一种非常糟糕的感觉。于是需要一种工具,它可以把关系型数据库包装成面向对象的模型,这个工具就是ORM框架。ORM(ObjectRelationalMapping,对象关系映射)的实现思想就是
- 技术债务未纳入计划管理怎么办
项目管理
技术债务管理的关键在于全面识别、动态整合、持续优化。其中,全面识别尤为重要,因为只有清晰了解现有系统中累积的技术债务,才能在项目计划中合理安排修正工作,防止负债失控;动态整合则要求将技术债务作为项目计划的重要组成部分,实时监控并定期调整修复策略;持续优化确保在项目迭代中不断改进和预防新的技术债务生成,从而提升整体系统质量和研发效率。一、明确技术债务概念与现状技术债务是指在软件开发过程中为追求短期目
- 大模型时代,后端程序员如何避免被AI卷死?
后端go程序员人工智能
我是王中阳,专注帮程序员升职加薪。最近后台收到很多留言:“AI都能写代码了,咱们后端是不是要失业了?”说实话,去年我也慌过。当看到AI能够快速生成代码,甚至某些简单的代码任务完成得比牛马程序员还要出色时,内心的焦虑感油然而生。但后来我通过深入研究和实践发现,这波AI浪潮里藏着巨大的升职加薪机会。今天说点大实话,教你怎么把AI变成涨薪工具。先泼盆冷水:这3类程序员真的危险了只会CRUD的API搬运工
- 了解目标检测:两阶段检测(Two-Stage Detection)、单阶段检测(Single-Stage Detection)和区域建议网络(RPN)
fydw_715
深度学习基础目标检测网络目标跟踪
了解目标检测:两阶段检测(Two-StageDetection)、单阶段检测(Single-StageDetection)和区域建议网络(RPN)在目标检测领域,模型架构在很大程度上决定了模型的性能、速度和应用场景。本文将详细探讨两类主要的目标检测方法——两阶段检测(Two-StageDetection)和单阶段检测(Single-StageDetection),以及它们的核心组件之一:区域建议网
- 大模型时代,什么是tokens?
人工智能
大模型时代,什么是tokens?前言在当今大模型主导的人工智能浪潮中,我们见证了诸多令人惊叹的应用。从精准流畅的语言翻译,到能够根据简单提示创作出富有创意故事的文本生成工具,大模型展现出了强大的能力。然而,在这些复杂且神奇的模型背后,有一个基础而关键的概念——tokens,它犹如大模型世界的基石,支撑着整个模型的运行与发展。理解tokens,对于我们深入认识大模型如何处理信息、优化性能以及合理应用
- 【AI绘画】“木刻时光·细密风”模型发布
bylander
AI学习AI绘画AI作画人工智能深度学习
模型中文名称:木刻时光·细密风模型名称:bylander/woodcutprint_v4模型使用说明:1)在提示词中需要说明”黑白木刻“,对应的英文提示是”woodcutprint,blackandwhite“等字样;2)生成提示词后,使用”提示词优化“的选项,生图效果更好;3)一般一次生成4张,就能挑选出满意的作品;4)如果效果不好,可以调整提示词,目前个人试验,各类场景(神话、日常生活、风景、
- 1.3 最优化的基本概念
西瓜毛毛猫
最优化算法
系统分类一般来说,最优化算法研究可以分为:构造最优化模型、确定最优化问题的类型与设计算法、实现算法或调用优化算法软件包进行求解。最优化模型的构造与实际问题息息相关。打个比方,给定二维欧几里得空间的若干个分离点,假定它们可以通过一条直线分成两部分,也可以通过一条曲线分成两部分。那么分别使用直线和曲线所得到的最优化模型是不同的。在前文的问题中,目标函数与约束函数都是由模型来决定的。在确定模型后,我们再
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1