论文笔记: 深度学习速度模型构建的层次迁移学习方法 (未完)

摘要: 分享对论文的理解, 原文见 Jérome Simon, Gabriel Fabien-Ouellet, Erwan Gloaguen, and Ishan Khurjekar, Hierarchical transfer learning for deep learning velocity model building, Geophysics, 2003, R79–R93. 这次的层次迁移应该指从 1D 到 2D 再到 3D.

摘要

深度学习具有使用最少的资源 (这里应该是计算资源, 特别是预测时的计算资源) 处理大量地震资料的潜力.
神经网络直接将数据 (即地震记录) 映射到模型 (如速度模型).
由于数据量太大, 直接做 2D 或 3D 不可行, 因此在一个子问题 (1D) 上训练神经网络.
通过迁移学习, 减少了 2D 训练数据的使用量. 注: 如何从 1D 迁移到 2D 是一个核心问题.
root-mean-square 误差为 ( 198 ± 91 198 \pm 91 198±91) m/s.
再次用到了 RMS 速度模型 (参见 论文笔记: 循环神经网络进行速度模型反演).

引言

DL 不仅用于 FWI, 也用于常规处理的各个步骤.
DL-FWI 暂时还不能成为工业标准, 但它有可能在缩短训练时间后超越物理规律驱动的 FWI (即数值模拟 FWI).
当前的 DL-FWI 只处理尺寸小的速度模型 (如 301*301), 可能有些薄层和盐丘, 但总体不具有实际数据的代表性.
Fabien-Ouellet and Sarkar (2020) 的方法可以处理较大规模数据, 但获得的速度模型横向连续性不好 (不符合物理规律, 这个用我们的边界提取辅助任务可能会缓解).
共中心点 CMP 道集看来用得比较多, 我们用的是共炮点 CSP 道集.
图像处理任务使用几万至几百万带标签实际数据进行训练, 地震数据可能有这么多, 但标签非常少 (如果不是没有的话). 这确实是大家面临的难题.

方法

问题: 从叠前数据直接估计 (反演) 倾斜分层声波速度模型. 注: 声波太简单了吧.
输入: n t × n h × n x n_t \times n_h \times n_x nt×nh×nx 的张量, 其中 t t t 是双向 (下去再上来) 走时, h h h 是 (水平) 偏移量, x x x 是 CMP 中心点的位置.

你可能感兴趣的:(论文笔记,深度学习)