用深度强化学习来玩Flappy Bird

目录

演示视频

核心代码


演示视频

用深度强化学习来玩Flappy Bird

核心代码

用深度强化学习来玩Flappy Bird_第1张图片

import torch.nn as nn

class DeepQNetwork(nn.Module):
    def __init__(self):
        super(DeepQNetwork, self).__init__()

        self.conv1 = nn.Sequential(nn.Conv2d(4, 32, kernel_size=8, stride=4), nn.ReLU(inplace=True))
        self.conv2 = nn.Sequential(nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(inplace=True))
        self.conv3 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(inplace=True))

        self.fc1 = nn.Sequential(nn.Linear(7 * 7 * 64, 512), nn.ReLU(inplace=True))
        self.fc2 = nn.Linear(512, 2)
        self._create_weights()

    def _create_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                nn.init.uniform_(m.weight, -0.01, 0.01)
                nn.init.constant_(m.bias, 0)

    def forward(self, input):
        output = self.conv1(input)
        output = self.conv2(output)
        output = self.conv3(output)
        output = output.view(output.size(0), -1)
        output = self.fc1(output)
        output = self.fc2(output)

        return output
from itertools import cycle
from numpy.random import randint
from pygame import Rect, init, time, display
from pygame.event import pump
from pygame.image import load
from pygame.surfarray import array3d, pixels_alpha
from pygame.transform import rotate
import numpy as np


class FlappyBird(object):
    init()
    fps_clock = time.Clock()
    screen_width = 288
    screen_height = 512
    screen = display.set_mode((screen_width, screen_height))
    display.set_caption('Deep Q-Network Flappy Bird')
    base_image = load('assets/sprites/base.png').convert_alpha()
    background_image = load('assets/sprites/background-black.png').convert()

    pipe_images = [rotate(load('assets/sprites/pipe-green.png').convert_alpha(), 180),
                   load('assets/sprites/pipe-green.png').convert_alpha()]
    bird_images = [load('assets/sprites/redbird-upflap.png').convert_alpha(),
                   load('assets/sprites/redbird-midflap.png').convert_alpha(),
                   load('assets/sprites/redbird-downflap.png').convert_alpha()]
    # number_images = [load('assets/sprites/{}.png'.format(i)).convert_alpha() for i in range(10)]

    bird_hitmask = [pixels_alpha(image).astype(bool) for image in bird_images]
    pipe_hitmask = [pixels_alpha(image).astype(bool) for image in pipe_images]

    fps = 30
    pipe_gap_size = 100
    pipe_velocity_x = -4

    # parameters for bird
    min_velocity_y = -8
    max_velocity_y = 10
    downward_speed = 1
    upward_speed = -9

    bird_index_generator = cycle([0, 1, 2, 1])

    def __init__(self):

        self.iter = self.bird_index = self.score = 0

        self.bird_width = self.bird_images[0].get_width()
        self.bird_height = self.bird_images[0].get_height()
        self.pipe_width = self.pipe_images[0].get_width()
        self.pipe_height = self.pipe_images[0].get_height()

        self.bird_x = int(self.screen_width / 5)
        self.bird_y = int((self.screen_height - self.bird_height) / 2)

        self.base_x = 0
        self.base_y = self.screen_height * 0.79
        self.base_shift = self.base_image.get_width() - self.background_image.get_width()

        pipes = [self.generate_pipe(), self.generate_pipe()]
        pipes[0]["x_upper"] = pipes[0]["x_lower"] = self.screen_width
        pipes[1]["x_upper"] = pipes[1]["x_lower"] = self.screen_width * 1.5
        self.pipes = pipes

        self.current_velocity_y = 0
        self.is_flapped = False

    def generate_pipe(self):
        x = self.screen_width + 10
        gap_y = randint(2, 10) * 10 + int(self.base_y / 5)
        return {"x_upper": x, "y_upper": gap_y - self.pipe_height, "x_lower": x, "y_lower": gap_y + self.pipe_gap_size}

    def is_collided(self):
        # Check if the bird touch ground
        if self.bird_height + self.bird_y + 1 >= self.base_y:
            return True
        bird_bbox = Rect(self.bird_x, self.bird_y, self.bird_width, self.bird_height)
        pipe_boxes = []
        for pipe in self.pipes:
            pipe_boxes.append(Rect(pipe["x_upper"], pipe["y_upper"], self.pipe_width, self.pipe_height))
            pipe_boxes.append(Rect(pipe["x_lower"], pipe["y_lower"], self.pipe_width, self.pipe_height))
            # Check if the bird's bounding box overlaps to the bounding box of any pipe
            if bird_bbox.collidelist(pipe_boxes) == -1:
                return False
            for i in range(2):
                cropped_bbox = bird_bbox.clip(pipe_boxes[i])
                min_x1 = cropped_bbox.x - bird_bbox.x
                min_y1 = cropped_bbox.y - bird_bbox.y
                min_x2 = cropped_bbox.x - pipe_boxes[i].x
                min_y2 = cropped_bbox.y - pipe_boxes[i].y
                if np.any(self.bird_hitmask[self.bird_index][min_x1:min_x1 + cropped_bbox.width,
                       min_y1:min_y1 + cropped_bbox.height] * self.pipe_hitmask[i][min_x2:min_x2 + cropped_bbox.width,
                                                              min_y2:min_y2 + cropped_bbox.height]):
                    return True
        return False

    def next_frame(self, action):
        pump()
        reward = 0.1
        terminal = False
        # Check input action
        if action == 1:
            self.current_velocity_y = self.upward_speed
            self.is_flapped = True

        # Update score
        bird_center_x = self.bird_x + self.bird_width / 2
        for pipe in self.pipes:
            pipe_center_x = pipe["x_upper"] + self.pipe_width / 2
            if pipe_center_x < bird_center_x < pipe_center_x + 5:
                self.score += 1
                reward = 1
                break

        # Update index and iteration
        if (self.iter + 1) % 3 == 0:
            self.bird_index = next(self.bird_index_generator)
            self.iter = 0
        self.base_x = -((-self.base_x + 100) % self.base_shift)

        # Update bird's position
        if self.current_velocity_y < self.max_velocity_y and not self.is_flapped:
            self.current_velocity_y += self.downward_speed
        if self.is_flapped:
            self.is_flapped = False
        self.bird_y += min(self.current_velocity_y, self.bird_y - self.current_velocity_y - self.bird_height)
        if self.bird_y < 0:
            self.bird_y = 0

        # Update pipes' position
        for pipe in self.pipes:
            pipe["x_upper"] += self.pipe_velocity_x
            pipe["x_lower"] += self.pipe_velocity_x
        # Update pipes
        if 0 < self.pipes[0]["x_lower"] < 5:
            self.pipes.append(self.generate_pipe())
        if self.pipes[0]["x_lower"] < -self.pipe_width:
            del self.pipes[0]
        if self.is_collided():
            terminal = True
            reward = -1
            self.__init__()

        # Draw everything
        self.screen.blit(self.background_image, (0, 0))
        self.screen.blit(self.base_image, (self.base_x, self.base_y))
        self.screen.blit(self.bird_images[self.bird_index], (self.bird_x, self.bird_y))
        for pipe in self.pipes:
            self.screen.blit(self.pipe_images[0], (pipe["x_upper"], pipe["y_upper"]))
            self.screen.blit(self.pipe_images[1], (pipe["x_lower"], pipe["y_lower"]))


        image = array3d(display.get_surface())
        display.update()
        self.fps_clock.tick(self.fps)
        return image, reward, terminal
import argparse
import torch

from src.deep_q_network import DeepQNetwork
from src.flappy_bird import FlappyBird
from src.utils import pre_processing


def get_args():
    parser = argparse.ArgumentParser(
        """Implementation of Deep Q Network to play Flappy Bird""")
    parser.add_argument("--image_size", type=int, default=84, help="The common width and height for all images")
    parser.add_argument("--saved_path", type=str, default="trained_models")

    args = parser.parse_args()
    return args


def q_test(opt):
    if torch.cuda.is_available():
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)
    if torch.cuda.is_available():
        model = torch.load("{}/flappy_bird".format(opt.saved_path))
    else:
        model = torch.load("{}/flappy_bird".format(opt.saved_path), map_location=lambda storage, loc: storage)
    model.eval()
    game_state = FlappyBird()
    image, reward, terminal = game_state.next_frame(0)
    image = pre_processing(image[:game_state.screen_width, :int(game_state.base_y)], opt.image_size, opt.image_size)
    image = torch.from_numpy(image)
    if torch.cuda.is_available():
        model.cuda()
        image = image.cuda()
    state = torch.cat(tuple(image for _ in range(4)))[None, :, :, :]

    while True:
        prediction = model(state)[0]
        action = torch.argmax(prediction)

        next_image, reward, terminal = game_state.next_frame(action)
        next_image = pre_processing(next_image[:game_state.screen_width, :int(game_state.base_y)], opt.image_size,
                                    opt.image_size)
        next_image = torch.from_numpy(next_image)
        if torch.cuda.is_available():
            next_image = next_image.cuda()
        next_state = torch.cat((state[0, 1:, :, :], next_image))[None, :, :, :]

        state = next_state


if __name__ == "__main__":
    opt = get_args()
    q_test(opt)
def get_args():
    parser = argparse.ArgumentParser(
        """Implementation of Deep Q Network to play Flappy Bird""")
    parser.add_argument("--image_size", type=int, default=84, help="The common width and height for all images")
    parser.add_argument("--batch_size", type=int, default=32, help="The number of images per batch")
    parser.add_argument("--optimizer", type=str, choices=["sgd", "adam"], default="adam")
    parser.add_argument("--lr", type=float, default=1e-6)
    parser.add_argument("--gamma", type=float, default=0.99)
    parser.add_argument("--initial_epsilon", type=float, default=0.1)
    parser.add_argument("--final_epsilon", type=float, default=1e-4)
    parser.add_argument("--num_iters", type=int, default=2000000)
    parser.add_argument("--replay_memory_size", type=int, default=50000,
                        help="Number of epoches between testing phases")
    parser.add_argument("--log_path", type=str, default="tensorboard")
    parser.add_argument("--saved_path", type=str, default="trained_models")

    args = parser.parse_args()
    return args


def train(opt):
    if torch.cuda.is_available():
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)
    model = DeepQNetwork()
    if os.path.isdir(opt.log_path):
        shutil.rmtree(opt.log_path)
    os.makedirs(opt.log_path)
    writer = SummaryWriter(opt.log_path)
    optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
    criterion = nn.MSELoss()
    game_state = FlappyBird()
    image, reward, terminal = game_state.next_frame(0)
    image = pre_processing(image[:game_state.screen_width, :int(game_state.base_y)], opt.image_size, opt.image_size)
    image = torch.from_numpy(image)
    if torch.cuda.is_available():
        model.cuda()
        image = image.cuda()
    state = torch.cat(tuple(image for _ in range(4)))[None, :, :, :]

    replay_memory = []
    iter = 0
    while iter < opt.num_iters:
        prediction = model(state)[0]
        # Exploration or exploitation
        epsilon = opt.final_epsilon + (
                (opt.num_iters - iter) * (opt.initial_epsilon - opt.final_epsilon) / opt.num_iters)
        u = random()
        random_action = u <= epsilon
        if random_action:
            print("Perform a random action")
            action = randint(0, 1)
        else:

            action = torch.argmax(prediction)

        next_image, reward, terminal = game_state.next_frame(action)
        next_image = pre_processing(next_image[:game_state.screen_width, :int(game_state.base_y)], opt.image_size,
                                    opt.image_size)
        next_image = torch.from_numpy(next_image)
        if torch.cuda.is_available():
            next_image = next_image.cuda()
        next_state = torch.cat((state[0, 1:, :, :], next_image))[None, :, :, :]
        replay_memory.append([state, action, reward, next_state, terminal])
        if len(replay_memory) > opt.replay_memory_size:
            del replay_memory[0]
        batch = sample(replay_memory, min(len(replay_memory), opt.batch_size))
        state_batch, action_batch, reward_batch, next_state_batch, terminal_batch = zip(*batch)

        state_batch = torch.cat(tuple(state for state in state_batch))
        action_batch = torch.from_numpy(
            np.array([[1, 0] if action == 0 else [0, 1] for action in action_batch], dtype=np.float32))
        reward_batch = torch.from_numpy(np.array(reward_batch, dtype=np.float32)[:, None])
        next_state_batch = torch.cat(tuple(state for state in next_state_batch))

        if torch.cuda.is_available():
            state_batch = state_batch.cuda()
            action_batch = action_batch.cuda()
            reward_batch = reward_batch.cuda()
            next_state_batch = next_state_batch.cuda()
        current_prediction_batch = model(state_batch)
        next_prediction_batch = model(next_state_batch)

        y_batch = torch.cat(
            tuple(reward if terminal else reward + opt.gamma * torch.max(prediction) for reward, terminal, prediction in
                  zip(reward_batch, terminal_batch, next_prediction_batch)))

        q_value = torch.sum(current_prediction_batch * action_batch, dim=1)
        optimizer.zero_grad()
        # y_batch = y_batch.detach()
        loss = criterion(q_value, y_batch)
        loss.backward()
        optimizer.step()

        state = next_state
        iter += 1
        print("Iteration: {}/{}, Action: {}, Loss: {}, Epsilon {}, Reward: {}, Q-value: {}".format(
            iter + 1,
            opt.num_iters,
            action,
            loss,
            epsilon, reward, torch.max(prediction)))
        writer.add_scalar('Train/Loss', loss, iter)
        writer.add_scalar('Train/Epsilon', epsilon, iter)
        writer.add_scalar('Train/Reward', reward, iter)
        writer.add_scalar('Train/Q-value', torch.max(prediction), iter)
        if (iter+1) % 1000000 == 0:
            torch.save(model, "{}/flappy_bird_{}".format(opt.saved_path, iter+1))
    torch.save(model, "{}/flappy_bird".format(opt.saved_path))


if __name__ == "__main__":
    opt = get_args()
    train(opt)

你可能感兴趣的:(Pytorch个人学习记录总结,人工智能,python,深度学习,pytorch,学习,娱乐,游戏)