- SpringBoot生态全景图:从SpringCloud到云原生技术栈演进
fanxbl957
Webspringbootspringcloud云原生
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人SpringBoot生态全景图:从S
- 利用大数据领域Doris提升企业数据决策效率
大数据洞察
大数据网络ai
利用大数据领域Doris提升企业数据决策效率关键词:大数据、Doris、企业数据决策、数据处理、效率提升摘要:本文围绕利用大数据领域的Doris来提升企业数据决策效率展开。首先介绍了背景,包括目的、预期读者、文档结构和相关术语。接着阐述了Doris的核心概念、架构以及与其他系统的联系。详细讲解了Doris的核心算法原理和具体操作步骤,并给出Python代码示例。同时介绍了相关的数学模型和公式。通过
- 基于AFM注意因子分解机的推荐算法
深度学习乐园
深度学习实战项目深度学习科研项目推荐算法算法机器学习
关于深度实战社区我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万+粉丝,拥有2篇国家级人工智能发明专利。社区特色:深度实战算法创新获取全部完整项目数据集、代码、视频教程,请进入官网:zzgcz.com。竞赛/论文/毕设项目辅导答疑,v:zzgcz_com1.项目简介项目A033基于A
- Tair向量数据库:阿里云原生内存数据库服务的高性能向量检索解决方案
mmlihaio
数据库云原生python
Tair向量数据库:阿里云原生内存数据库服务的高性能向量检索解决方案1.引言在当今的人工智能和大数据时代,高效的向量检索已成为许多应用场景的关键需求。Tair作为阿里云开发的云原生内存数据库服务,不仅提供了丰富的数据模型和企业级能力,还引入了基于非易失性内存(NVM)存储介质的持久内存优化实例。本文将深入探讨如何利用Tair向量数据库功能,实现高性能的向量存储和检索。2.Tair向量数据库概述Ta
- 解锁阿里云E-MapReduce:大数据处理的超能力秘籍
云资源服务商
阿里云云计算人工智能云原生
一、引言在数字化浪潮汹涌澎湃的当下,大数据已然成为推动各行业创新发展的核心驱动力。从电商平台精准的个性化推荐,到金融机构严密的风险评估,再到医疗领域高效的疾病预测,大数据的应用场景无处不在,深刻地改变着我们的生活与工作方式。在这片充满机遇与挑战的大数据领域中,阿里云E-MapReduce宛如一颗璀璨的明星,占据着举足轻重的地位。它凭借强大的大数据处理能力、卓越的性能表现以及丰富的功能特性,为企业和
- 阿里云魔搭社区AIGC专区:中国AI创作的革命性平台
Liudef06小白
阿里云AIGC人工智能
在生成式人工智能重塑全球数字创作版图的浪潮中,中国首个一站式AIGC开发平台——阿里云魔搭社区AIGC专区于2024年9月杭州云栖大会正式亮相。这一突破性进展不仅填补了国内全流程AI创作工具的空白,更以157款多模态开源模型和全免费GPU算力的开放姿态,为超过690万开发者提供了从模型调用到应用落地的完整生态支持。一、魔搭社区:中国AI模型生态的奠基者魔搭社区(ModelScope)作为阿里云在2
- 探秘阿里云Tair KVCache:大模型推理的加速引擎
云资源服务商
阿里云云计算人工智能
一、引言近年来,人工智能领域发展迅猛,大语言模型(LLM)不断取得突破,其应用场景也日益广泛。从智能客服到内容生成,从智能写作到智能翻译,大语言模型正在深刻地改变着我们的生活和工作方式。随着模型规模的不断扩大和推理需求的日益增长,大模型推理过程中的显存瓶颈问题逐渐凸显,成为制约其发展和应用的关键因素。在大模型推理中,KVCache技术作为一种优化手段,通过缓存历史Token的Key/Value向量
- AI正在偷偷取代这10种职业,你的工作安全吗?
近年来,人工智能(AI)的飞速发展正在悄然改变我们的工作方式。从自动化客服到AI生成内容,许多传统职业正面临被取代的风险。虽然AI带来了更高的效率和便利,但也让不少人开始担忧:我的工作会被AI抢走吗?今天,我们就来盘点10种最容易被AI取代的职业,并探讨如何在这个AI时代保持竞争力。1.客服代表取代指数:★★★★★AI驱动的聊天机器人(如ChatGPT、GoogleBard)已经能够处理大部分基础
- 直播预告!探讨生成模型中的极简概念擦除
青稞社区.
青稞Talk人工智能图像处理
主页:http://qingkeai.online/原文:https://mp.weixin.qq.com/s/yc4whKbnVY8ho1w7rgFVGg6月16日20:00,青稞Talk第55期,新加坡国立大学博士生张扬,将直播分享《生成模型中的极简概念擦除》。分享嘉宾张扬,慕尼黑工业大学计算机专业硕士,新加坡国立大学人工智能专业博士。曾于牛津大学进行学术访问,并在微软亚洲研究院及美国运通新加
- 【DeepSeek实战】3、Ollama实战指南:LobeChat+多网关架构打造高可用大模型集群
无心水
Ollama实战指南LobeChat实战DeepSeek实战DeepSeek全栈应用开发AI入门大模型CSDN技术干货
一、企业级大模型集群架构全景解析在人工智能落地应用的过程中,大模型服务的高可用性、成本控制和灵活扩展能力成为企业关注的核心痛点。本方案通过LobeChat前端、AI网关层和Ollama模型集群的三层架构设计,实现了无需复杂运维即可部署的生产级大模型服务体系。该架构不仅支持负载均衡、故障转移和模型热切换等企业级特性。还通过量化技术将硬件成本降低60%以上,为中小企业提供了与商业云服务相当的性能体验。
- 生成式人工智能实战 | 深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network, DCGAN)
盼小辉丶
生成式人工智能实战150讲人工智能生成对抗网络神经网络
生成式人工智能实战|深度卷积生成对抗网络0.前言1.模型与数据集分析1.1模型分析1.2数据集介绍2.构建DCGAN生成人脸图像2.1数据处理2.2模型构建2.3模型训练0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetworks,DCGAN)是基于生成对抗网络(ConvolutionalGenerativeAdversarialNet
- 2024年AI 智能助手(大模型)产品市场分析|商派
徐礼昭|商派软件市场负责人
人工智能
一、引言人工智能的浪潮不断向前推进,智能助手作为其中的重要应用,已经逐渐渗透到我们生活的各个方面。它们以其便捷性和个性化的特点,改变了我们与世界的互动方式。本报告将对AI智能助手进行全面的行业分析,包括行业概况、主要玩家、用户数据、发展要素以及未来趋势等方面,并通过具体案例分享,帮助读者深入了解这一领域的现状和未来发展潜力。二、行业概览(一)智能助手的定义和发展阶段智能助手是利用人工智能技术为用户
- 高通 QCS8550 大模型性能深度解析:从算力基准到场景实测的全维度 Benchmark
伊利丹~怒风
Qualcomm人工智能AI编程pythonarm自然语言处理
前言在人工智能技术狂飙突进的时代,大模型正以前所未有的速度重塑各行业生态,从智能客服到多模态交互,从边缘推理到端侧部署,其应用场景不断拓展。而这一切革新的背后,离不开底层硬件的强力支撑。高通QCS8550作为面向下一代智能设备的旗舰级计算平台,凭借高达48TOPS的AI算力与先进的第七代高通AI引擎,在大模型性能表现上极具竞争力。其异构多核架构不仅能高效处理复杂的神经网络计算,还通过软硬件协同优化
- 从零开始理解零样本学习:AI人工智能必学技术
AI天才研究院
AgenticAI实战AI人工智能与大数据AI大模型企业级应用开发实战ai
从零开始理解零样本学习:AI人工智能必学技术关键词:零样本学习、人工智能、机器学习、知识迁移、语义嵌入摘要:本文旨在全面深入地介绍零样本学习这一在人工智能领域具有重要意义的技术。首先阐述零样本学习的背景和基本概念,通过详细的解释和直观的示意图让读者建立起对零样本学习的初步认识。接着深入剖析其核心算法原理,结合Python代码进行详细说明,同时引入相关数学模型和公式并举例阐释。通过项目实战部分,带领
- [Python]-基础篇1- 从零开始的Python入门指南
踏雪无痕老爷子
Pythonpython开发语言
无论你是尚未接触编程的新手,还是想从其他语言转向Python的开发者,这篇文章都是你的入门课。一、Python是什么?Python是一种解释型、高级、通用型编程语言,以简洁明了、简单易用着称。它可以应用于网站开发、自动化脚本、数据分析、人工智能、系统操作等多种场景。二、如何安装Python步骤:访问Python官方网站选择目前最新的Python3.x版本下载Windows用户请务必勾选“AddPy
- 【机器学习&深度学习】反向传播机制
目录一、一句话定义二、类比理解三、为什重要?四、用生活例子解释:神经网络=烹饪机器人4.1第一步:尝一口(前向传播)4.2第二步:倒着推原因(反向传播)五、换成人工智能流程说一遍六、图示类比:找山顶(最优参数)七、总结一句人话八、PyTorch代码示例:亲眼看到每一层的梯度九、梯度=损失函数对参数的偏导数十、类比总结反向传播(Backpropagation)是神经网络中训练过程的核心机制,它就像“
- 潜入思维的海洋:SoftCoT++如何让语言模型更聪明
步子哥
智能涌现语言模型人工智能自然语言处理
在人工智能的浩瀚星空下,大型语言模型(LLMs)如同一颗颗璀璨的恒星,照亮了从文本生成到复杂推理的广阔领域。然而,这些模型在推理任务中往往像是在迷雾中航行——尽管它们能抵达目的地,却常常因为固定的思维路径而错过更优的航线。2025年5月,一篇题为《SoftCoT++:Test-TimeScalingwithSoftChain-of-ThoughtReasoning》的论文如同一盏明灯,照亮了如何让
- 大数据面试必备:Kafka性能优化 Producer与Consumer配置指南
Kafka面试题-在Kafka中,如何通过配置优化Producer和Consumer的性能?回答重点在Kafka中,通过优化Producer和Consumer的配置,可以显著提高性能。以下是一些关键配置项和策略:1、Producer端优化:batch.size:批处理大小。增大batch.size可以使Producer每次发送更多的消息,但要注意不能无限制增大,否则会导致内存占用过多。linger
- BI+AI实战:我们如何用3秒完成车企供应链推演
qq_43696218
人工智能
一、BI+AI引领财务分析新纪元在财务数据分析领域,奥威BI+AI正以革命性的姿态颠覆传统。当金蝶、用友等工具仍深陷报表泥潭时,奥威BI+AI通过深度融合商业智能(BI)与人工智能(AI),实现了从滞后报表到实时洞察的飞跃。这不仅极大地提升了财务分析的效率,更为企业的战略决策提供了前所未有的精准支持。二、BI+AI的核心技术优势实时动态分析o奥威BI+AI摒弃了静态数据集,依托原始科目余额表实
- DeepSeek-V3 通俗详解:从诞生到优势,以及与 GPT-4o 的对比
码事漫谈
AIai
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站1.DeepSeek的前世今生1.1什么是DeepSeek?DeepSeek是一家专注于人工智能技术研发的公司,致力于打造高性能、低成本的AI模型。它的目标是让AI技术更加普惠,让更多人能够用上强大的AI工具。1.2DeepSeek-V3的诞生DeepSeek-V3是DeepSeek公司推出的最新一代A
- 企业级AI开发利器:Spring AI框架深度解析与实战_spring ai实战
AI大模型-海文
人工智能springpython算法开发语言java机器学习
企业级AI开发利器:SpringAI框架深度解析与实战一、前言:Java生态的AI新纪元在人工智能技术爆发式发展的今天,Java开发者面临着一个新的挑战:如何将大语言模型(LLMs)和生成式AI(GenAI)无缝融入企业级应用。传统的Java生态缺乏统一的AI集成方案,开发者往往需要为不同AI供应商(如OpenAI、阿里云、HuggingFace)编写大量重复的接口适配代码,这不仅增加了开发成本,
- 图扑软件智慧云展厅,开启数字化展馆新模式
智慧园区
可视化5g人工智能大数据安全云计算
随着疫情的影响以及新兴技术的不断发展,展会的发展形式也逐渐从线下转向线上。通过“云”上启动、云端互动、双线共频的形式开展。通过应用大数据、人工智能、沉浸式交互等多重技术手段,构建数据共享、信息互通、精准匹配的高精度“云展厅”,突破时空壁垒限制。图扑软件运用HT强大的渲染功能,数字孪生“云展位”,1:1复现实际展厅内部独特的结构造型和建筑特色。也可以第一人称视角漫游,模拟用户在展厅内的参观场景,在保
- 转行要趁早!网络安全行业人才缺口大,企业招聘需求正旺!
网络安全行业具有人才缺口大、岗位选择多、薪资待遇好、学历要求不高等优势,对于想要转行的人员来说,是一个非常不错的选择。人才缺口大网络安全攻防技术手段日新月异,特别是现在人工智能技术飞速发展,网络安全形势复杂严峻,人才重要性凸显。教育部《网络安全人才实战能力白皮书》数据显示,到2027年,我国网络安全人员缺口将达327万。近期发布的《2024年网络安全产业人才发展报告》中提到,沿用ISC2的人才缺口
- 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘Aprioripython关联规则人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 误差的回响:反向传播算法与神经网络的惊天逆转
田园Coder
人工智能科普人工智能科普
当专家系统在20世纪80年代初期大放异彩,成为人工智能实用化的耀眼明星时,另一股曾经被宣判“死刑”的力量——连接主义(神经网络)——正在寒冬的冻土下悄然涌动,孕育着一场惊天动地的复苏。马文·明斯基和西摩·帕尔特在1969年《感知机》专著中那精准而冷酷的理论批判,如同沉重的封印,将多层神经网络的研究禁锢了近二十年。他们指出的核心死结——缺乏有效算法来训练具有隐藏层的网络——仿佛一道无法逾越的天堑。单
- 【Html实现“心形日出”(附效果+源代码)】| JavaScript面试题:解释一下异步编程中的回调函数、Promise和Async/Await的概念。它们有什么区别?
追光者♂
html5css3心形日出前端特效JS面试题PromiseAsync/Await
风会带走你曾经存在过的证明。——虞姬作者主页:追光者♂个人简介:[1]计算机专业硕士研究生[2]2023年城市之星领跑者TOP1(哈尔滨)[3]2022年度博客之星人工智能领域TOP4[4]阿里云社区特邀专家博主[5]CSDN-人工智能领域优质创作者无限进步,一起追光!!!
- vue大数据量列表渲染性能优化:虚拟滚动原理
Java小卷
Vue3开源组件实战vue3自定义Tree虚拟滚动
前面咱完成了自定义JuanTree组件各种功能的实现。在数据量很大的情况下,我们讲了两种实现方式来提高渲染性能:前端分页和节点数据懒加载。前端分页小节:Vue3扁平化Tree组件的前端分页实现节点数据懒加载小节:ElementTreePlus版功能演示:数据懒加载关于扁平化结构Tree和嵌套结构Tree组件的渲染嵌套结构的Tree组件是一种递归渲染,性能上比起列表结构的v-for渲染比较一般。对于
- redis的scan使用详解,结合spring使用详解
黑皮爱学习
redis自学笔记redisspring数据库
Redis的SCAN命令是一种非阻塞的迭代器,用于逐步遍历数据库中的键,特别适合处理大数据库。下面详细介绍其使用方法及在Spring框架中的集成方式。SCAN命令基础SCAN命令的基本语法:SCANcursor[MATCHpattern][COUNTcount]cursor:迭代游标,初始为0,每次迭代返回新的游标值。MATCHpattern:可选,用于过滤键的模式(如user:*)。COUNTc
- 青少年编程与数学 01-012 通用应用软件简介 15 人工智能助手
明月看潮生
编程与数学第01阶段青少年编程人工智能应用软件编程与数学
青少年编程与数学01-012通用应用软件简介15人工智能助手一、什么是人工智能助手二、人工智能助手的产生和发展(一)早期探索阶段(二)技术突破阶段(三)广泛应用阶段三、人工智能助手的主要功能(一)信息查询(二)日程管理(三)设备控制(四)知识问答四、人工智能助手的商业模式(一)广告收入(二)增值服务(三)数据服务(四)硬件销售五、DeepSeek(一)基本情况(二)技术水平(三)产品功能(四)市场
- 虚拟空间中的AI协作与任务
AI天才研究院
ChatGPTAI大模型企业级应用开发实战AI人工智能与大数据大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
虚拟空间与AI概述在当今信息化和数字化的时代,虚拟空间(VirtualSpace)已成为人们生活和工作的重要一部分。虚拟空间是一种通过计算机技术构建的虚拟环境,它能够模拟和增强现实世界中的各种交互和体验。而人工智能(AI)作为计算机科学的一个分支,通过模拟人类的认知能力来实现自动化和智能化的决策。虚拟空间与AI的结合,不仅为人类带来了全新的交互方式,也为各行业的发展注入了强大的动力。虚拟空间的定义
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号