代码随想录算法训练营第五十一天 | 309. 最佳买卖股票时机含冷冻期、714. 买卖股票的最佳时机含手续费

309. 最佳买卖股票时机含冷冻期

动规五部曲

1、确定dp数组以及下标的含义

dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。

具体可以区分出如下四个状态:

  • 状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
  • 不持有股票状态,这里就有两种卖出股票状态
    • 状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
    • 状态三:今天卖出股票
  • 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!

代码随想录算法训练营第五十一天 | 309. 最佳买卖股票时机含冷冻期、714. 买卖股票的最佳时机含手续费_第1张图片

j的状态为:

  • 0:状态一
  • 1:状态二
  • 2:状态三
  • 3:状态四

注意这里的每一个状态,例如状态一,是持有股票股票状态并不是说今天一定就买入股票,而是说保持买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态。 

2、确定递推公式

达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:

  • 操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
  • 操作二:今天买入了,有两种情况
    • 前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
    • 前一天是保持卖出股票的状态(状态二),dp[i - 1][1] - prices[i]

那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);

达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

  • 操作一:前一天就是状态二
  • 操作二:前一天是冷冻期(状态四)

dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:

昨天一定是持有股票状态(状态一),今天卖出

即:dp[i][2] = dp[i - 1][0] + prices[i];

达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:

昨天卖出了股票(状态三)

dp[i][3] = dp[i - 1][2];

3、dp数组如何初始化

如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],一定是当天买入股票。

保持卖出股票状态(状态二),只能初始为0

今天卖出了股票(状态三),同上分析,dp[0][2]初始化为0,dp[0][3]也初始为0。

4、确定遍历顺序

从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

5、举例推导dp数组

以 [1,2,3,0,2] 为例,dp数组如下:

代码随想录算法训练营第五十一天 | 309. 最佳买卖股票时机含冷冻期、714. 买卖股票的最佳时机含手续费_第2张图片

最后结果是取 状态二,状态三,和状态四的最大值

状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。 

class Solution {
public:
    int maxProfit(vector& prices) {
        if (prices.size() == 0) return 0;
        int len = prices.size();
        vector> dp(len, vector(4,0));
        dp[0][0] = -prices[0];
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i],dp[i - 1][1] - prices[i]));
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
            dp[i][2] = dp[i - 1][0] + prices[i];
            dp[i][3] = dp[i - 1][2];
        }
        return max(dp[len - 1][1], max(dp[len - 1][2], dp[len - 1][3]));
    }
};

714. 买卖股票的最佳时机含手续费

与普通买卖股票问题一致,手续费可以放在买入股票时,也可以放在卖出股票时进行计算

本题把手续费算入买入股票时

动规五部曲:

1、确定dp数组以及下标的含义

dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。

可以分为两种状态:状态一:不持有股票(j为0);状态二:持有股票(j为1)

2、确定递推公式

不持有股票状态:有两种情况

  • 昨天不持有
  • 昨天持有,今天把昨天股票卖出

dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i]

持有股票状态:

  • 昨天已持有
  • 昨天未持有,今天买入股票

dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i] - fee)

3、dp数组如何初始化

不持有股票 dp[0][0] = 0;

持有股票 dp[0][1] = -prices[0] - fee;

4、确定遍历顺序

从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

5、举例推导dp数组

以 prices = [1, 3, 2, 8, 4, 9], fee = 2 为例

代码随想录算法训练营第五十一天 | 309. 最佳买卖股票时机含冷冻期、714. 买卖股票的最佳时机含手续费_第3张图片

class Solution {
public:
    int maxProfit(vector& prices, int fee) {
        if (prices.size() == 0) return 0;
        vector> dp(prices.size(), vector(2,0));
        dp[0][0] = 0;
        dp[0][1] = -prices[0] - fee;
        for (int i = 1; i < prices.size(); i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i] - fee);
        }
        return max(dp[prices.size() - 1][0], dp[prices.size() - 1][1]);
    }
};

你可能感兴趣的:(动态规划,算法,leetcode,数据结构)