深度学习-4-二维目标检测-YOLOv5源码测试与训练

本文采用的YOLOv5源码是ultralytics发行版3.1

YOLOv5源码测试与训练

1.Anaconda环境配置

1.1安装Anaconda

Anaconda 是一个用于科学计算的 Python 发行版,支持 Linux, Mac, Windows, 包含了众多流行的科学计算、数据分析的 Python 包。

官方网址下载安装包:Free Download | Anaconda

开启终端安装

bash ~/Downloads/Anaconda3-2020.07-Linux-x86_64.sh

anaconda会自动将环境变量添加到PATH里面,但如果终端输入conda后,提示没有该命令。

可以自己配置环境变量。

sudo gedit ~/.bashrc

#在文件最后添加环境变量,保存退出,然后更新环境变量

export PATH=/home/meta/anaconda3/bin:$PATH

source ~/.bashrc

1.2conda虚拟环境中安装pytorch

首先创建虚拟环境,并激活

conda create -n yolov5_ultralytics python=3.7

conda activate yolov5_ultralytics

在新创建的虚拟环境下安装pytorch和其适配的cuda

conda install pytorch torchvision cudatoolkit=11.5 -c pytorch

2.下载项目文件到本地

2.1下载yolov5-ultralytics版本源码v3.1

Release v3.1 - Bug Fixes and Performance Improvements · ultralytics/yolov5 · GitHub

项目文件目录

深度学习-4-二维目标检测-YOLOv5源码测试与训练_第1张图片

2.2使用清华镜像源安装依赖包

在yolov5_ultralytics虚拟环境和yolov5项目目录下开启终端执行

终端进入虚拟环境命令,退出当前虚拟环境命令conda deactivate

conda activate yolov5_ultralytics

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

2.3下载预训练权重文件

yolov5s.pt,yolov5m.pt,yolov5l.pt,yolov5x.pt ,放置在weights文件夹下

2.4测试项目文件detect.py

终端执行

python detect.py --source ./inference/images/ --weights weights/yolov5s.pt --conf 0.4

深度学习-4-二维目标检测-YOLOv5源码测试与训练_第2张图片

将权重文件替换为yolov5x.pt后图片检测结果对比 

深度学习-4-二维目标检测-YOLOv5源码测试与训练_第3张图片深度学习-4-二维目标检测-YOLOv5源码测试与训练_第4张图片

3.准备VOC数据集

3.1从百度网盘下载VOC数据文件

  • VOCtrainval_06-Nov-2007.tar
  • VOCtrainval_11-May-2012.tar
  • VOCtest_06-Nov-2007.tar
  • get_voc_ubuntu.py

3个tar压缩包解压后组合成为一个文件夹VOCdevkit,将其拷贝到yolov5项目文件夹下。

3.2进行数据集的划分

终端执行python脚本,创建VOC文件夹,将数据文件转换为yolo格式

python get_voc_ubuntu.py

在VOCdevkit / VOC2007和VOCdevkit / VOC2012目录下生成了文件夹labels ;

在yolov5目录下生成了文件2007_train.txt, 2007_val.txt, 2007_test.txt, 2012_train.txt,2012_val.txt,train.txt, train.all.txt。

在VOC目录下生成了images和labels文件夹;

  • labels下的文件是JPEGImages文件夹下每一个图像的yolo格式的标注文件,这是由annotations的xml标注文件转换来的
  • yolov5目录下的train.txt和2007_test.txt分别给出了yolov5训练集图片和yolov5验证集图片的列表,含有每个图片的路径和文件名
  • VOC/images文件夹下有train和val文件夹,分别放置yolov5训练集和验证集图片;VOC/labels文件夹有train和val文件夹,分别放置yolov5训练集和验证集标签(yolo格式)

4.修改配置文件

主要是修改data和models目录下的yaml文件

4.1新建data/voc.yaml

复制voc.yaml文件后修改,注释掉自动下载的代码即可。

4.2新建models/yolov5s-voc.yaml

复制yolov5s.yaml文件后修改,只需将类别数量改为nc: 20

5.终端训练VOC数据集

在yolov5_ultralytics虚拟环境和yolov5项目目录下

开启终端执行

python train.py --data data/voc-new.yaml --cfg models/yolov5s-voc.yaml --weights weights/yolov5s.pt --batch-size 16 --epochs 200

训练过程可视化

tensorboard --logdir=./runs

6.测试训练出的网络模型

在yolov5_ultralytics虚拟环境和yolov5项目目录下

开启终端执行,测试图片

python detect.py --source ./VOC/images/val/000001.jpg --weights
runs/exp0/weights/best.pt --conf 0.4

性能统计

python test.py --data data/voc-new.yaml --weights runs/exp0/weights/best.pt --batch-size 16

7.导出ONNX文件

ONNX(Open Neural Network Exchange),开放神经网络交换,是一种模型IR,用于在各种深度学习训练和推理框架转换的一个中间表示格式。在实际业务中,可以使用Pytorch或者TensorFlow训练模型,导出成ONNX格式,然后再转换成目标设备上支持的模型格式,比如TensorRT Engine、NCNN、MNN等格式。ONNX定义了一组和环境、平台均无关的模型结构和参数的标准格式,来增强各种AI模型的可交互性,开放性较强。

# for ONNX export

pip install onnx>=1.7.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

# for CoreML export
pip install coremltools==4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

# export at 640x640 with batch size 1
python models/export.py --weights weights/yolov5s.pt --img 640 --batch 1

你可能感兴趣的:(深度学习,YOLO,深度学习,目标检测,YOLO)