Spark Standalone Cluster环境搭建

Spark Standalone Cluster环境搭建过程中的一些命令代码有必要记录一下,正好看到以下这篇文章转载过来了。

1.在master虚拟机设置spark-env.sh

(1)复制模板文件来创建spark-env.sh

        cp /usr/local/spark/conf/spark-env.sh.template /usr/local/spark/conf/spark-env.sh

(2)修改spark-env.sh

        sudo vim /usr/local/spark/conf/spark-env.sh

        export SPARK_MASTER_IP=master

        export SPARK_WORKER_CORES=1

        export SPARK_WORKER_MEMORY=128m

        export SPARK_WORKER_INSTANCES=4

2.复制spark程序到data1、data2、data3

(1)复制spark程序到data1

        ssh data1

        sudo mkdir /usr/local/spark

        sudo chown hduser:hduser /usr/local/spark

        exit

        sudo scp -r /usr/local/spark hduser@data1:/usr/local

(2)复制spark程序到data2

        ssh data2

        sudo mkdir /usr/local/spark

        sudo chown hduser:hduser /usr/local/spark

        exit

        sudo scp -r /usr/local/spark hduser@data2:/usr/local

(3)复制spark程序到data3

        ssh data3

        sudo mkdir /usr/local/spark

        sudo chown hduser:hduser /usr/local/spark

        exit

        sudo scp -r /usr/local/spark hduser@data3:/usr/local

3.在master虚拟机编辑slaves文件

        1.修改slaves文件

          sudo vim /usr/local/spark/conf/slaves

          data1

          data2

          data3

4.启动Spark Standalone Cluster

        /usr/local/spark/sbin/start-all.sh     

      或

      /usr/local/spark/sbin/start-master.sh     

      /usr/local/spark/sbin/start-slaves.sh


5.在spark standalone运行pyspark

    pyspark --master spark://master:7077 --num-executors 1 --total-executor-cores 3 --executor-memory 512m


---------------------

作者:剑海风云

来源:CSDN

原文:https://blog.csdn.net/nanxiaotao/article/details/90482958

版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(Spark Standalone Cluster环境搭建)