4.4 主成分分析

在Python中,主成分分析的函数位于Scikit-Learn下:
sklearn.decomposition.PCA(n_components = None, copy = True, whiten = False

主成分分析是一种用于连续属性的数据降维方法,它构造了原始数据的一个正交变换,新空间的基底去除了原始空间基底下数据的相关性,只需要使用少数新变量就能够解释原始数据中的大部分变异。在应用中,通常是选出比原始变量个数少,能解释大部分数据中的变量的几个新变量,即所谓主成分,来代替原始变量进行建模。

import pandas as pd
from sklearn.decomposition import PCA

inputfile = './data/principal_component.xls'
outputfile = './data/dimention_reducted.xls' # 降维后的数据输出

data = pd.read_excel(inputfile, header = None)  # 读入数据

pca = PCA()
pca.fit(data)
pca.components_  # 返回模型的各个特征向量
pca.explained_variance_ratio_  # 返回各个成分各自的方差百分比 (贡献率)

array([7.74011263e-01, 1.56949443e-01, 4.27594216e-02, 2.40659228e-02,
       1.50278048e-03, 4.10990447e-04, 2.07718405e-04, 9.24594471e-05])

可以看到前四个主成分时,累计贡献率达到97.37%,说明选取前3个主成分进行计算已经相当不错了。因此从新建立PCA模型
pca = PCA(3)
pca.fit(data)
low_d = pca.transform(data)  # 用它来降低维度
pd.DataFrame(low_d).to_excel(outputfile)  # 保存结果
pca.inverse_transform(low_d)  # 必要时可以用inverse_transform()函数来复原数据

low_d
array([[  8.19133694,  16.90402785,   3.90991029],
       [  0.28527403,  -6.48074989,  -4.62870368],
       [-23.70739074,  -2.85245701,  -0.4965231 ],
       [-14.43202637,   2.29917325,  -1.50272151],
       [  5.4304568 ,  10.00704077,   9.52086923],
       [ 24.15955898,  -9.36428589,   0.72657857],
       [ -3.66134607,  -7.60198615,  -2.36439873],
       [ 13.96761214,  13.89123979,  -6.44917778],
       [ 40.88093588, -13.25685287,   4.16539368],
       [ -1.74887665,  -4.23112299,  -0.58980995],
       [-21.94321959,  -2.36645883,   1.33203832],
       [-36.70868069,  -6.00536554,   3.97183515],
       [  3.28750663,   4.86380886,   1.00424688],
       [  5.99885871,   4.19398863,  -8.59953736]])

你可能感兴趣的:(4.4 主成分分析)