人工智能论文通用创新点(一)——ACMIX 卷积与注意力融合、GCnet(全局特征融合)、Coordinate_attention、SPD(可替换下采样)

1.ACMIX 卷积与注意力融合

论文地址:https://arxiv.org/pdf/2111.14556.pdf

        为了实现卷积与注意力的融合,我们让特征图经过两个路径,一个路径经过卷积,另外一个路径经过Transformer,但是,现在有一个问题,卷积路径比较快,Transformer比较慢。因此,我们让Q,K,V通过1*1的卷积得到,同时使用窗口注意力,同时将3*3的卷积分解为1*1的卷积,从而共享参数。

        人工智能论文通用创新点(一)——ACMIX 卷积与注意力融合、GCnet(全局特征融合)、Coordinate_attention、SPD(可替换下采样)_第1张图片

        如下图所示,对于卷积,stage1用1*1的卷积代替3*3的卷积,得到不同位置的特征,stage2再利用类卷积操作进行偏移,实现3*3卷积的效果;对于自注意力机制,首先使用1^1的卷积得到q,k,v,然后再进行自注意力计算。然后进行组合,共享1*1的卷积,然后分别走卷积和自注意力。 

人工智能论文通用创新点(一)——ACMIX 卷积与注意力融合、GCnet(全局特征融合)、Coordinate_attention、SPD(可替换下采样)_第2张图片

代码详解:

 难点:窗口注意力的实现

        我们在

你可能感兴趣的:(对比学习,人工智能,计算机视觉,深度学习)