贝叶斯理论一个重要的概念是条件概率
c,x不独立时,p(cx)=p(c|x)p(x)
意思是cx都发生的概率=x发生的概率乘以x发生的情况下c发生的概率
from __future__ import print_function
from numpy import *
"""
p(xy)=p(x|y)p(y)=p(y|x)p(x)
p(x|y)=p(y|x)p(x)/p(y)
"""
# 项目案例1: 屏蔽社区留言板的侮辱性言论
def loadDataSet():
"""
创建数据集
:return: 单词列表postingList, 所属类别classVec
"""
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #[0,0,1,1,1......]
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0, 1, 0, 1, 0, 1] # 1 is abusive, 0 not
return postingList, classVec
def createVocabList(dataSet):
"""
获取所有单词的集合
:param dataSet: 数据集
:return: 所有单词的集合(即不含重复元素的单词列表)
"""
vocabSet = set([]) # create empty set
for document in dataSet:
# 操作符 | 用于求两个集合的并集
vocabSet = vocabSet | set(document) # union of the two sets
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
"""
遍历查看该单词是否出现,出现该单词则将该单词置1
:param vocabList: 所有单词集合列表
:param inputSet: 输入数据集
:return: 匹配列表[0,1,0,1...],其中 1与0 表示词汇表中的单词是否出现在输入的数据集中
"""
# 创建一个和词汇表等长的向量,并将其元素都设置为0
returnVec = [0] * len(vocabList)# [0,0......]
# 遍历文档中的所有单词,如果出现了词汇表中的单词,则将输出的文档向量中的对应值设为1
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print("the word: %s is not in my Vocabulary!" % word)
return returnVec
def _trainNB0(trainMatrix, trainCategory):
"""
训练数据原版
:param trainMatrix: 文件单词矩阵 [[1,0,1,1,1....],[],[]...]
:param trainCategory: 文件对应的类别[0,1,1,0....],列表长度等于单词矩阵数,其中的1代表对应的文件是侮辱性文件,0代表不是侮辱性矩阵
:return:
"""
# 文件数
numTrainDocs = len(trainMatrix)
# 单词数
numWords = len(trainMatrix[0])
# 侮辱性文件的出现概率,即trainCategory中所有的1的个数,
# 代表的就是多少个侮辱性文件,与文件的总数相除就得到了侮辱性文件的出现概率
pAbusive = sum(trainCategory) / float(numTrainDocs)
# 构造单词出现次数列表
p0Num = zeros(numWords) # [0,0,0,.....]
p1Num = zeros(numWords) # [0,0,0,.....]
# 整个数据集单词出现总数
p0Denom = 0.0
p1Denom = 0.0
for i in range(numTrainDocs):
# 遍历所有的文件,如果是侮辱性文件,就计算此侮辱性文件中出现的侮辱性单词的个数
if trainCategory[i] == 1:
p1Num += trainMatrix[i] #[0,1,1,....]->[0,1,1,...]
p1Denom += sum(trainMatrix[i])
else:
# 如果不是侮辱性文件,则计算非侮辱性文件中出现的侮辱性单词的个数
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
# 类别1,即侮辱性文档的[P(F1|C1),P(F2|C1),P(F3|C1),P(F4|C1),P(F5|C1)....]列表
# 即 在1类别下,每个单词出现次数的占比
p1Vect = p1Num / p1Denom# [1,2,3,5]/90->[1/90,...]
# 类别0,即正常文档的[P(F1|C0),P(F2|C0),P(F3|C0),P(F4|C0),P(F5|C0)....]列表
# 即 在0类别下,每个单词出现次数的占比
p0Vect = p0Num / p0Denom
return p0Vect, p1Vect, pAbusive
def trainNB0(trainMatrix, trainCategory):
"""
训练数据优化版本
:param trainMatrix: 文件单词矩阵
:param trainCategory: 文件对应的类别
:return:
"""
# 总文件数
numTrainDocs = len(trainMatrix)
# 总单词数
numWords = len(trainMatrix[0])
# 侮辱性文件的出现概率
pAbusive = sum(trainCategory) / float(numTrainDocs)
# 构造单词出现次数列表
# p0Num 正常的统计
# p1Num 侮辱的统计
# 避免单词列表中的任何一个单词为0,而导致最后的乘积为0,所以将每个单词的出现次数初始化为 1
p0Num = ones(numWords)#[0,0......]->[1,1,1,1,1.....]
p1Num = ones(numWords)
# 整个数据集单词出现总数,2.0根据样本/实际调查结果调整分母的值(2主要是避免分母为0,当然值可以调整)
# p0Denom 正常的统计
# p1Denom 侮辱的统计
p0Denom = 2.0
p1Denom = 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
# 累加辱骂词的频次
p1Num += trainMatrix[i]
# 对每篇文章的辱骂的频次 进行统计汇总
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
# 类别1,即侮辱性文档的[log(P(F1|C1)),log(P(F2|C1)),log(P(F3|C1)),log(P(F4|C1)),log(P(F5|C1))....]列表
p1Vect = log(p1Num / p1Denom)
# 类别0,即正常文档的[log(P(F1|C0)),log(P(F2|C0)),log(P(F3|C0)),log(P(F4|C0)),log(P(F5|C0))....]列表
p0Vect = log(p0Num / p0Denom)
return p0Vect, p1Vect, pAbusive
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
"""
使用算法:
# 将乘法转换为加法
乘法: P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C)/P(F1F2...Fn)
加法: P(F1|C)*P(F2|C)....P(Fn|C)P(C) -> log(P(F1|C))+log(P(F2|C))+....+log(P(Fn|C))+log(P(C))
:param vec2Classify: 待测数据[0,1,1,1,1...],即要分类的向量
:param p0Vec: 类别0,即正常文档的[log(P(F1|C0)),log(P(F2|C0)),log(P(F3|C0)),log(P(F4|C0)),log(P(F5|C0))....]列表
:param p1Vec: 类别1,即侮辱性文档的[log(P(F1|C1)),log(P(F2|C1)),log(P(F3|C1)),log(P(F4|C1)),log(P(F5|C1))....]列表
:param pClass1: 类别1,侮辱性文件的出现概率
:return: 类别1 or 0
"""
# 计算公式 log(P(F1|C))+log(P(F2|C))+....+log(P(Fn|C))+log(P(C))
# 使用 NumPy 数组来计算两个向量相乘的结果,这里的相乘是指对应元素相乘,即先将两个向量中的第一个元素相乘,然后将第2个元素相乘,以此类推。
# 我的理解是: 这里的 vec2Classify * p1Vec 的意思就是将每个词与其对应的概率相关联起来
# 可以理解为 1.单词在词汇表中的条件下,文件是good 类别的概率 也可以理解为 2.在整个空间下,文件既在词汇表中又是good类别的概率
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
def testingNB():
"""
测试朴素贝叶斯算法
"""
# 1. 加载数据集
listOPosts, listClasses = loadDataSet()
# 2. 创建单词集合
myVocabList = createVocabList(listOPosts)
# 3. 计算单词是否出现并创建数据矩阵
trainMat = []
for postinDoc in listOPosts:
# 返回m*len(myVocabList)的矩阵, 记录的都是0,1信息
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
# 4. 训练数据
p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
# 5. 测试数据
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
# ------------------------------------------------------------------------------------------
# 项目案例2: 使用朴素贝叶斯过滤垃圾邮件
# 切分文本
def textParse(bigString):
'''
Desc:
接收一个大字符串并将其解析为字符串列表
Args:
bigString -- 大字符串
Returns:
去掉少于 2 个字符的字符串,并将所有字符串转换为小写,返回字符串列表
'''
import re
# 使用正则表达式来切分句子,其中分隔符是除单词、数字外的任意字符串
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
def spamTest():
'''
Desc:
对贝叶斯垃圾邮件分类器进行自动化处理。
Args:
none
Returns:
对测试集中的每封邮件进行分类,若邮件分类错误,则错误数加 1,最后返回总的错误百分比。
'''
docList = []
classList = []
fullText = []
for i in range(1, 26):
# 切分,解析数据,并归类为 1 类别
wordList = textParse(open('data/4.NaiveBayes/email/spam/%d.txt' % i).read())
docList.append(wordList)
classList.append(1)
# 切分,解析数据,并归类为 0 类别
wordList = textParse(open('data/4.NaiveBayes/email/ham/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
# 创建词汇表
vocabList = createVocabList(docList)
trainingSet = range(50)
testSet = []
# 随机取 10 个邮件用来测试
for i in range(10):
# random.uniform(x, y) 随机生成一个范围为 x - y 的实数
randIndex = int(random.uniform(0, len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat = []
trainClasses = []
for docIndex in trainingSet:
trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses))
errorCount = 0
for docIndex in testSet:
wordVector = setOfWords2Vec(vocabList, docList[docIndex])
if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
errorCount += 1
print('the errorCount is: ', errorCount)
print('the testSet length is :', len(testSet))
print('the error rate is :', float(errorCount)/len(testSet))
def testParseTest():
print(textParse(open('data/4.NaiveBayes/email/ham/1.txt').read()))
# -----------------------------------------------------------------------------------
# 项目案例3: 使用朴素贝叶斯从个人广告中获取区域倾向
# 将文本文件解析成 词条向量
def setOfWords2VecMN(vocabList,inputSet):
returnVec=[0]*len(vocabList) # 创建一个其中所含元素都为0的向量
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)]+=1
return returnVec
#文件解析
def textParse(bigString):
import re
listOfTokens=re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok)>2]
#RSS源分类器及高频词去除函数
def calcMostFreq(vocabList,fullText):
import operator
freqDict={}
for token in vocabList: #遍历词汇表中的每个词
freqDict[token]=fullText.count(token) #统计每个词在文本中出现的次数
sortedFreq=sorted(freqDict.iteritems(),key=operator.itemgetter(1),reverse=True) #根据每个词出现的次数从高到底对字典进行排序
return sortedFreq[:30] #返回出现次数最高的30个单词
def localWords(feed1,feed0):
import feedparser
docList=[];classList=[];fullText=[]
minLen=min(len(feed1['entries']),len(feed0['entries']))
for i in range(minLen):
wordList=textParse(feed1['entries'][i]['summary']) #每次访问一条RSS源
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList=textParse(feed0['entries'][i]['summary'])
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList=createVocabList(docList)
top30Words=calcMostFreq(vocabList,fullText)
for pairW in top30Words:
if pairW[0] in vocabList:vocabList.remove(pairW[0]) #去掉出现次数最高的那些词
trainingSet=range(2*minLen);testSet=[]
for i in range(20):
randIndex=int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[];trainClasses=[]
for docIndex in trainingSet:
trainMat.append(bagOfWords2VecMN(vocabList,docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam=trainNB0(array(trainMat),array(trainClasses))
errorCount=0
for docIndex in testSet:
wordVector=bagOfWords2VecMN(vocabList,docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam)!=classList[docIndex]:
errorCount+=1
print('the error rate is:',float(errorCount)/len(testSet))
return vocabList,p0V,p1V
# 最具表征性的词汇显示函数
def getTopWords(ny,sf):
import operator
vocabList,p0V,p1V=localWords(ny,sf)
topNY=[];topSF=[]
for i in range(len(p0V)):
if p0V[i]>-6.0:topSF.append((vocabList[i],p0V[i]))
if p1V[i]>-6.0:topNY.append((vocabList[i],p1V[i]))
sortedSF=sorted(topSF,key=lambda pair:pair[1],reverse=True)
print("SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**")
for item in sortedSF:
print(item[0])
sortedNY=sorted(topNY,key=lambda pair:pair[1],reverse=True)
print("NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**")
for item in sortedNY:
print(item[0])
testingNB()
spamTest()
laTest()