代码随想录算法训练营第39天 | ● 62.不同路径 ● 63. 不同路径II

文章目录

  • 前言
  • 一、62.不同路径
  • 二、63.不同路径II
  • 总结

前言

动态规划


一、62.不同路径

  • 深搜
  • 动态规划
  • 数论

深搜:

注意题目中说机器人每次只能向下或者向右移动一步,那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!

如图举例:

代码随想录算法训练营第39天 | ● 62.不同路径 ● 63. 不同路径II_第1张图片

此时问题就可以转化为求二叉树叶子节点的个数,代码如下:

class Solution {
private:
    int dfs(int i, int j, int m, int n) {
        if (i > m || j > n) return 0; // 越界了
        if (i == m && j == n) return 1; // 找到一种方法,相当于找到了叶子节点
        return dfs(i + 1, j, m, n) + dfs(i, j + 1, m, n);
    }
public:
    int uniquePaths(int m, int n) {
        return dfs(1, 1, m, n);
    }
};

这棵树的深度其实就是m+n-1(深度按从1开始计算)。

那二叉树的节点个数就是 2^(m + n - 1) - 1。可以理解深搜的算法就是遍历了整个满二叉树(其实没有遍历整个满二叉树,只是近似而已)

所以上面深搜代码的时间复杂度为O(2^(m + n - 1) - 1),可以看出,这是指数级别的时间复杂度,是非常大的。


动态规划:

  1. 定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

  1. dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

所以初始化代码为:

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
  1. 确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

  1. 举例推导dp数组

如图所示:

代码随想录算法训练营第39天 | ● 62.不同路径 ● 63. 不同路径II_第2张图片

代码:

class Solution {
    public int uniquePaths(int m, int n) {
        int dp[][] = new int[m][n];
        for(int i = 0;i


数论:

在这个图中,可以看出一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。

代码随想录算法训练营第39天 | ● 62.不同路径 ● 63. 不同路径II_第3张图片

在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。

那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。

那么这就是一个组合问题了。

代码随想录算法训练营第39天 | ● 62.不同路径 ● 63. 不同路径II_第4张图片

求组合的时候,要防止两个int相乘溢出! 所以不能把算式的分子都算出来,分母都算出来再做除法。

需要在计算分子的时候,不断除以分母,代码如下:

class Solution {
public:
    int uniquePaths(int m, int n) {
        long long numerator = 1; // 分子
        int denominator = m - 1; // 分母
        int count = m - 1;
        int t = m + n - 2;
        while (count--) {
            numerator *= (t--);
            while (denominator != 0 && numerator % denominator == 0) {
                numerator /= denominator;
                denominator--;
            }
        }
        return numerator;
    }
};
  • 时间复杂度:O(m)
  • 空间复杂度:O(1)

计算组合问题的代码还是有难度的,特别是处理溢出的情况!

二、63.不同路径II

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。

所以代码为:

if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]
    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
  1. dp数组如何初始化

在62.不同路径

(opens new window)不同路径中我们给出如下的初始化:

vector> dp(m, vector(n, 0)); // 初始值为0
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

如图:

代码随想录算法训练营第39天 | ● 62.不同路径 ● 63. 不同路径II_第5张图片

下标(0, j)的初始化情况同理。

所以本题初始化代码为:

vector> dp(m, vector(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

  1. 确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

代码如下:

for (int i = 1; i < m; i++) {
    for (int j = 1; j < n; j++) {
        if (obstacleGrid[i][j] == 1) continue;
        dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
    }
}
  1. 举例推导dp数组

拿示例1来举例如题:

代码随想录算法训练营第39天 | ● 62.不同路径 ● 63. 不同路径II_第6张图片

对应的dp table 如图:

代码随想录算法训练营第39天 | ● 62.不同路径 ● 63. 不同路径II_第7张图片

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int dp[][] = new int[m][n];

        if(obstacleGrid[0][0] == 1 || obstacleGrid[m-1][n-1] == 1){
            return 0;
        }

        for(int i = 0;i


总结

今天去看《奥本海默》。

你可能感兴趣的:(算法)