Python四大数据类型大盘点!夯实基础再构筑上层建筑,真的硬通货

前言

学习是一件长久而且可持续性的事情,切忌不能一曝十寒。咱们今天来巩固学习一下Python四大数据类型,之前咱们也有提到过,看你已经掌握了多少呢?

数值型

Python 中的数据皆是对象,比如被熟知的 int 整型对象、float 双精度浮点型、bool 逻辑对象,它们都是单个元素。举两个例子。

前缀加 0x,创建一个十六进制的整数:

0xa5 # 等于十进制的 165

使用 e 创建科学计数法表示的浮点数:

1.05e3 # 1050.0

容器型

可容纳多个元素的容器对象,常用的比如:list 列表对象、 tuple 元组对象、dict 字典对象、set 集合对象。Python 定义这些类型的变量,语法非常简洁。

举例如下。

使用一对中括号 [],创建一个 list 型变量:

lst = [1,3,5] # list 变量

示意图看出,右侧容器为开环的,意味着可以向容器中增加和删除元素:

使用一对括号 (),创建一个 tuple 型对象:

tup = (1,3,5) # tuple 变量

示意图看出,右侧容器为闭合的,意味着一旦创建元组后,便不能再向容器中增删元素:

但需要注意,含单个元素的元组后面必须保留一个逗号,才被解释为元组。

tup = (1,) # 必须保留逗号

否则会被认为元素本身:

In [14]: tup=(1)

...: print(type(tup))

使用一对花括号 {} 另使用冒号 :,创建一个 dict 对象:

dic = {'a':1, 'b':3, 'c':5} # dict变量

字典是一个哈希表,下面的示意图形象的表达出字典的 “形”。

仅使用一对花括号 {},创建一个 set 对象:

s = {1,3,5} # 集合变量

Python 的容器类型,list、dict、tuple、set 等能方便地实现强大的功能,下面给出几个案例。

1. 去最求平均

去掉列表中的一个最小值和一个最大值后,计算剩余元素的平均值。

def score_mean(lst):

lst.sort()

lst2=lst[1:-1]

return round((sum(lst2)/len(lst2)),1)

lst=[9.1, 9.0,8.1, 9.7, 19,8.2, 8.6,9.8]

score_mean(lst) # 9.1

2. 打印 99 乘法表

打印出如下格式的乘法表:

1*1=1

1*2=2  2*2=4

1*3=3  2*3=6  3*3=9

1*4=4  2*4=8  3*4=12  4*4=16

1*5=5  2*5=10  3*5=15  4*5=20  5*5=25

1*6=6  2*6=12  3*6=18  4*6=24  5*6=30  6*6=36

1*7=7  2*7=14  3*7=21  4*7=28  5*7=35  6*7=42  7*7=49

1*8=8  2*8=16  3*8=24  4*8=32  5*8=40  6*8=48  7*8=56  8*8=64

1*9=9  2*9=18  3*9=27  4*9=36  5*9=45  6*9=54  7*9=63  8*9=72  9*9=81

一共有 10 行,第 i 行的第 j 列等于:j*i,其中:

i 取值范围:1<=i<=9

j 取值范围:1<=j<=i

根据“例子分析”的语言描述,转化为如下代码:

In [13]: for i in range(1,10):

...:    for j in range(1,i+1):

...:        print('%d*%d=%d'%(j,i,j*i),end='\t')

...:    print()

3. 样本抽样

使用 sample 抽样,如下例子从 100 个样本中随机抽样 10 个。

from random import randint,sample

lst = [randint(0,50) for _ in range(100)]

print(lst[:5])# [38, 19, 11, 3, 6]

lst_sample = sample(lst,10)

print(lst_sample) # [33, 40, 35, 49, 24, 15, 48, 29, 37, 24]

字符串

注意 Python 中没有像 C++ 表示的字符类型(char),所有的字符或串都被统一为 str 对象。如单个字符 c 的类型也为 str。

str 类型会被经常使用,先列举 5 个被高频使用的方法。

strip 用于去除字符串前后的空格:

In [1]: '  I love python\t\n  '.strip()

Out[1]: 'I love python'

replace 用于字符串的替换:

In [2]: 'i love python'.replace(' ','_')

Out[2]: 'i_love_python'

join 用于合并字符串:

In [3]: '_'.join(['book', 'store','count'])

Out[3]: 'book_store_count'

title 用于单词的首字符大写:

In [4]: 'i love python'.title()

Out[4]: 'I Love Python'

find 用于返回匹配字符串的起始位置索引:

In [5]: 'i love python'.find('python')

Out[5]: 7

举个应用字符串的案例,判断 str1 是否有 str2 旋转而来。

字符串 stringbook 旋转后得到 bookstring,写一段代码验证 str1 是否为 str2 旋转得到。

转化为判断:str1 是否为 str2+str2 的子串。

下面函数原型中,注明了每个参数的类型、返回值的类型,增强代码的可读性和可维护性。

def is_rotation(s1: str, s2: str) -> bool:

if s1 is None or s2 is None:

return False

if len(s1) != len(s2):

return False

def is_substring(s1: str, s2: str) -> bool:

return s1 in s2

return is_substring(s1, s2 + s2)

测试函数 is_rotation:

r = is_rotation('stringbook', 'bookstring')

print(r)  # True

r = is_rotation('greatman', 'maneatgr')

print(r)  # False

字符串的匹配操作除了使用 str 封装的方法外,Python 的 re 正则模块功能更加强大,写法更为简便,广泛适用于爬虫、数据分析等。

下面这个案例实现:密码安全检查,使用正则表达式非常容易实现。

密码安全要求:

要求密码为 6 到 20 位;

密码只包含英文字母和数字。

import re

pat = re.compile(r'\w{6,20}') # 这是错误的,因为 \w 通配符匹配的是字母,数字和下划线,题目要求不能含有下划线

# 使用最稳的方法:\da-zA-Z 满足“密码只包含英文字母和数字”

# \d匹配数字 0-9

# a-z 匹配所有小写字符;A-Z 匹配所有大写字符

pat = re.compile(r'[\da-zA-Z]{6,20}')

选用最保险的 fullmatch 方法,查看是否整个字符串都匹配。

以下测试例子都返回 None,原因都在解释里。

pat.fullmatch('qaz12') # 返回 None,长度小于 6

pat.fullmatch('qaz12wsxedcrfvtgb67890942234343434') # None 长度大于 22

pat.fullmatch('qaz_231') # None 含有下划线

下面这个字符串 n0passw0Rd 完全符合:

In [20]: pat.fullmatch('n0passw0Rd')

Out[20]:

自定义类型

Python 使用关键字 class 定制自己的类,self 表示类实例对象本身。

一个自定义类内包括属性、方法,其中有些方法是自带的。

1.类(对象):

class Dog(object):

pass

以上定义一个 Dog 对象,它继承于根类 object,pass 表示没有自定义任何属性和方法。

下面创建一个 Dog 类型的实例:

wangwang = Dog()

Dog 类现在没有定义任何方法,但是刚才说了,它会有自带的方法,使用 __dir__() 查看这些自带方法:

In [26]: wangwang.__dir__()

Out[26]:

['__module__',

'__dict__',

'__weakref__',

'__doc__',

'__repr__',

'__hash__',

'__str__',

'__getattribute__',

'__setattr__',

'__delattr__',

'__lt__',

'__le__',

'__eq__',

'__ne__',

'__gt__',

'__ge__',

'__init__',

'__new__',

'__reduce_ex__',

'__reduce__',

'__subclasshook__',

'__init_subclass__',

'__format__',

'__sizeof__',

'__dir__',

'__class__']

有些地方称以上方法为魔法方法,它们与创建类时自定义个性化行为有关。比如:

__init__ 方法能定义一个带参数的类;

__new__ 方法自定义实例化类的行为;

__getattribute__ 方法自定义读取属性的行为;

__setattr__ 自定义赋值与修改属性时的行为。

2.类的属性:

def __init__(self, name, dtype):

self.name = name

self.dtype = dtype

通过 __init__,定义 Dog 对象的两个属性:name、dtype。

3.类的实例:

wangwang = Dog('wangwang','cute_type')

wangwang 是 Dog 类的实例。

4.类的方法:

def shout(self):

print('I\'m %s, type: %s' % (self.name, self.dtype))

注意:

自定义方法的第一个参数必须是 self,它指向实例本身,如 Dog 类型的实例 dog;

引用属性时,必须前面添加 self,比如 self.name 等。

总结以上代码:

In [40]: class Dog(object):

...:    def __init__(self,name,dtype):

...:        self.name=name

...:        self.dtype=dtype

...:    def shout(self):

...:        print('I\'m %s, type: %s' % (self.name, self.dtype))

In [41]: wangwang = Dog('wangwang','cute_type')

In [42]: wangwang.name

Out[42]: 'wangwang'

In [43]: wangwang.dtype

Out[43]: 'cute_type'

In [44]: wangwang.shout()

I'm wangwang, type: cute_type

看到创建的两个属性和一个方法都被暴露在外面,可被 wangwang 调用。这样的话,这些属性就会被任意修改:

In [49]: wangwang.name='wrong_name'

In [50]: wangwang.name

Out[50]: 'wrong_name'

如果想避免属性 name 被修改,可以将它变为私有变量。改动方法:属性前加 2 个 _ 后,变为私有属性。如:

In [51]: class Dog(object):

...:    def __init__(self,name,dtype):

...:        self.__name=name

...:        self.__dtype=dtype

...:    def shout(self):

...:        print('I\'m %s, type: %s' % (self.name, self.dtype))

同理,方法前加 2 个 _ 后,方法变为“私有方法”,只能在 Dog 类内被共享使用。

但是这样改动后,属性 name 不能被访问了,也就无法得知 wangwang 的名字叫啥。不过,这个问题有一种简单的解决方法,直接新定义一个方法就行:

def get_name(self):

return self.__name

综合代码:

In [52]: class Dog(object):

...:    def __init__(self,name,dtype):

...:        self.__name=name

...:        self.__dtype=dtype

...:    def shout(self):

...:        print('I\'m %s, type: %s' % (self.name, self.dtype))

...:    def get_name(self):

...:        return self.__name

...:

In [53]: wangwang = Dog('wangwang','cute_type')

In [54]: wangwang.get_name()

Out[54]: 'wangwang'

但是,通过此机制,改变属性的可读性或可写性,怎么看都不太优雅!因为无形中增加一些冗余的方法,如 get_name。

下面,通过另一个例子,解释如何更优雅地改变某个属性为只读或只写。

自定义一个最精简的 Book 类,它继承于系统的根类 object:

class Book(object):

def __init__(self,name,sale):

self.__name = name

self.__sale = sale

使用 Python 自带的 property 类,就会优雅地将 name 变为只读的。

@property

def name(self):

return self.__name

使用 @property 装饰后 name 变为属性,意味着 .name 就会返回这本书的名字,而不是通过 .name() 这种函数调用的方法。这样变为真正的属性后,可读性更好。

In [101]: class Book(object):

...:    def __init__(self,name,sale):

...:        self.__name = name

...:        self.__sale = sale

...:    @property

...:    def name(self):

...:        return self.__name

In [102]: a_book = Book('magic_book',100000)

In [103]: a_book.name

Out[103]: 'magic_book'

property 是 Python 自带的类,前三个参数都是函数类型。更加详细的讨论放在后面讨论装饰器时再展开。

In [104]: help(property)

Help on class property in module builtins:

class property(object)

|  property(fget=None, fset=None, fdel=None, doc=None)

如果是 name 既可读又可写,就再增加一个装饰器 @name.setter。

In [105]: class Book(object):

...:    def __init__(self,name,sale):

...:        self.__name = name

...:        self.__sale = sale

...:    @property

...:    def name(self):

...:        return self.__name

...:    @name.setter

...:    def name(self,new_name):

...:        self.__name = new_name

In [106]: a_book = Book('magic_book',100000)

In [107]: a_book.name = 'magic_book_2.0'

In [108]: a_book.name

Out[108]: 'magic_book_2.0'

注意这种装饰器写法:name.setter,name 已经被包装为 property 实例,调用实例上的 setter 函数再包装 name 后就会可写。对于 Python 入门者,可以暂时不用太纠结这部分理论,使用 Python 一段时间后,再回过头来自然就会理解。

Python数据类型就帮大家整理到这了,还觉得不够过瘾的小伙伴没关系,小编已经把相应Python学习资料帮大家整理好了,请关注小编,并添加微信:bjmsb1 来免费领取吧~~~

你可能感兴趣的:(Python四大数据类型大盘点!夯实基础再构筑上层建筑,真的硬通货)