- 【大模型】triton inference server
idiotyi
大模型自然语言处理语言模型人工智能
前言:tritoninferenceserver常用于大模型部署,可以采用http或GRPC调用,支持大部分的backend,单GPU、多GPU都可以支持,CPU也支持。本文主要是使用tritoninferenceserver部署大模型的简单流程示例。目录1.整体流程2.搭建本地仓库3.服务端代码4.启动服务5.客户端调用1.整体流程搭建模型仓库模型配置服务端调用代码docker启动服务客户端调用
- 【深度学习】【OnnxRuntime】【Python】模型转化、环境搭建以及模型部署的详细教程
牙牙要健康
深度学习onnxonnxruntime深度学习python人工智能
【深度学习】【OnnxRuntime】【Python】模型转化、环境搭建以及模型部署的详细教程提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论文章目录【深度学习】【OnnxRuntime】【Python】模型转化、环境搭建以及模型部署的详细教程前言模型转换--pytorch转onnxWindows平台搭建依赖环境onnxruntime调用onnx模型ONNXRuntime推理核
- Ollama全面指南:安装、使用与高级定制
我就是全世界
ollama
本文全面介绍了Ollama工具,包括其安装、基本使用、高级定制以及实际应用案例。详细讲解了如何在不同操作系统上安装Ollama,如何运行和自定义大型语言模型,以及如何通过Ollama进行模型部署和交互。此外,还提供了丰富的故障排除和FAQ,帮助用户解决使用过程中的常见问题。文章目录Ollama基础入门Ollama简介支持的操作系统安装Ollama快速开始使用OllamaOllama的安装与配置ma
- 本地部署大语言模型详细讲解
程序员小羊!
杂文语言模型人工智能自然语言处理
大家好,我是程序员小羊!前言:本地部署大语言模型(LLM,LargeLanguageModel)需要相应的硬件资源和技术栈支持,如GPU计算能力、大量内存、存储空间,以及模型部署框架。以下是如何在本地部署大语言模型的详细解释,包括选择模型、硬件需求、安装必要的软件和工具、下载和配置模型、以及优化运行性能的建议。一、前期准备1.硬件需求部署大语言模型的硬件要求主要取决于模型的大小和运行任务的复杂度。
- 【环境搭建:onnx模型部署】onnxruntime-gpu安装与测试(python)(1)
2401_83703835
程序员python深度学习pytorch
cuda==10.2cudnn==8.0.3onnxruntime-gpu==1.5.0or1.6.0pipinstallonnxruntime-gpu==1.6.0###2.2方法二:onnxruntime-gpu不依赖于本地主机上cuda和cudnn在conda环境中安装,不依赖于本地主机上已安装的cuda和cudnn版本,灵活方便。这里,先说一下已经测试通过的组合:*python3.6,cu
- 机器学习框架巅峰对决:TensorFlow vs. PyTorch vs. Scikit-Learn实战分析
@sinner
技术选型机器学习tensorflowpytorchscikit-learn
1.引言1.1机器学习框架的重要性在机器学习的黄金时代,框架的选择对于开发高效、可扩展的模型至关重要。合适的框架可以极大地提高开发效率,简化模型的构建和训练过程,并支持大规模的模型部署。因此,了解和选择最合适的机器学习框架对于研究人员和工程师来说是一个关键的步骤。1.2三大框架概览:TensorFlow、PyTorch、Scikit-Learn目前,最流行的机器学习框架主要有TensorFlow、
- 并行处理的艺术:深入探索PyTorch中的torch.nn.parallel模块
杨哥带你写代码
pytorch人工智能python
标题:并行处理的艺术:深入探索PyTorch中的torch.nn.parallel模块在深度学习领域,模型的规模和复杂性不断增长,这要求我们利用所有可用的计算资源来加速训练和推理过程。PyTorch,作为当前流行的深度学习框架之一,提供了torch.nn.parallel模块,允许我们轻松地将模型部署到多个GPU上。本文将详细介绍如何使用这个模块,以及如何通过并行化来提高模型的计算效率。引言深度学
- 最新视频合成后调优技术ExVideo模型部署
杰说新技术
AIGC多模态AIGC人工智能
ExVideo是一种新型的视频合成模型后调优技术,由华东师范大学和阿里巴巴的研究人员共同开发。ExVideo提出了一种新的后调优策略,无需对整个模型进行大规模重训,仅通过对模型中时序相关组件的微调,就能够显著增强其生成更长视频片段的能力,大大降低了对计算资源的需求,仅需1.5kgpu小时就能将视频生成帧数提高至原模型的5倍。ExVideo在提升视频长度的同时,并没有牺牲模型的泛化能力,生成的视频在
- [模型部署] ONNX模型转TRT模型部分要点
lainegates
深度学习人工智能
本篇讲“ONNX模型转TRT模型”部分要点。以下皆为TRT模型的支持情况。模型存为ONNX格式后,已经丢失了很多信息,与原python代码极难对应。因为在“ONNX转TRT”时,转换出错,更难映射回python代码。解决此类问题的关键为:转onnx时要打开verbose选项,输出每一行python的模型代码被转成了哪些ONNX算子。torch.onnx.export(model,(dummy_in
- 深度学习系列70:模型部署torchserve
IE06
深度学习系列深度学习人工智能
1.流程说明ts文件夹下,从launcher.py进入,执行jar文件。入口为model_server.py的start()函数。内容包含:读取args,创建pid文件找到java,启动model-server.jar程序,同时读取log-config文件,TEMP文件夹地址,TS_CONFIG_FILE文件根据cpu核数、gpu个数,启动多进程。每个进程有一个socket_name和socket
- 在STM32上实现嵌入式人工智能应用
嵌入式详谈
stm32人工智能嵌入式硬件
引言随着微控制器的计算能力不断增强,人工智能(AI)开始在嵌入式系统中扮演越来越重要的角色。STM32微控制器由于其高性能和低功耗的特性,非常适合部署轻量级AI模型。本文将探讨如何在STM32平台上实现深度学习应用,特别是利用STM32Cube.AI工具链将训练好的神经网络模型部署到STM32设备上。环境准备硬件选择:STM32F746GDiscoverykit,具备足够的计算资源和内存支持复杂模
- 数据科学生命周期的7个步骤–在业务中应用AI
听忆.
人工智能
数据科学生命周期的7个步骤–在业务中应用AI1.问题定义(BusinessUnderstanding)2.数据收集(DataCollection)3.数据准备(DataPreparation)4.数据探索(ExploratoryDataAnalysis,EDA)5.模型构建(Modeling)6.模型评估(Evaluation)7.模型部署与维护(DeploymentandMaintenance)
- Yolov8:模型部署到安卓端
爱编码的小陈
深度学习YOLO
1.项目准备1.1先安装JDK和Androidstudio(1)JDK下载:官网站:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html同意协议后,下载相应版本的JDK我这里没有下载JDK21版的,下载的是jdk1.8版本,参考文章:AndroidStudio开发环境快速搭建(超详细
- 【机器学习】Whisper:开源语音转文本(speech-to-text)大模型实战
LDG_AGI
AI智能体研发之路-模型篇机器学习whisper人工智能语音识别实时音视频pythontransformer
目录一、引言二、Whisper模型原理2.1模型架构2.2语音处理2.3文本处理三、Whisper模型实战3.1环境安装3.2模型下载3.3模型推理3.4完整代码3.5模型部署四、总结一、引言上一篇对ChatTTS文本转语音模型原理和实战进行了讲解,第6次拿到了热榜第一。今天,分享其对称功能(语音转文本)模型:Whisper。Whisper由OpenAI研发并开源,参数量最小39M,最大1550M
- pyinstaller打包onnxruntime-gpu报错找不到CUDA的解决方案
布呐呐na
人工智能python
问题说明:使用onnxruntime-gpu完成了深度学习模型部署,但在打包时发生了报错:找不到CUDA具体问题描述:RuntimeError:D:\a\_work\1\s\onnxruntime\python\onnxruntime_pybind_state.cc:857onnxruntime::python::CreateExecutionProviderInstanceCUDA_PATHis
- 大模型量化技术原理-LLM.int8()、GPTQ
吃果冻不吐果冻皮
动手学大模型人工智能
近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,从而导致模型变得越来越大,因此,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。模型压缩主要分为如下几类:剪枝(Pruning)知识蒸馏(KnowledgeDistillation)量化之前也写过一些文章涉及大模型量化相关的内容。基于LLaMA-7B/Bloomz-7B1-mt复现开
- 我把ChatGPT部署到我的手机上
人工智能
正常的大模型部署都是在服务器上的但是最近我看到一个手机上可以运行的大模型分享给大家MiniCPMMiniCPM是基于MLC-LLM开发,将MiniCPM和MiniCPM-V在Android手机端上运行。使用起来很简单,下载好安装包后按照教程安装好下载2个模型一个是MiniCPM一个是MiniCPM-vMiniCPM-v是可以处理图像的下载好后,点击模型的进行对话即可安装MiniCPM只占2GB空间
- 81TensorFlow 2 模型部署方法实践--TensorFlow Serving 部署模型
Jachin111
TensorFlowServing部署模型TensorFlowServing是一个针对机器学习模型的灵活、高性能的服务系统,专为生产环境而设计。本节实验将使用TensorFlowServing部署MobileNetV2模型,并通过两种方法访问TensorFlowServing服务进行图像识别。TensorFlowServing安装在这里我们通过Docker来安装TensorFlowServing,
- 深度学习笔记:推理服务
TaoTao Li
tensorflow深度学习深度学习人工智能机器学习
在线推理服务解决的问题样本处理特征抽取(生成)特征抽取过程特征定义通用定义具体定义特征抽取加速Embeding查询NN计算DL框架计算优化图优化量化优化异构计算CodeGen总结参考资料解决的问题模型训练解决模型效果问题,模型推理解决模型实时预测问题。推理服务是把训练好的模型部署到线上,进行实时预测的过程。如阿里的RTP系统顾名思义,实时预测是相对于非实时预测(离线预测)而言,非实时预测是将训练好
- 如何实现远程云服务器模型部署在本地使用
时光诺言
服务器运维ssh
远程云服务器模型部署在本地使用1.问题说明:在使用pycharm的ssh连接到远程云服务器时,模型已经加载成功并且出现了如下标识:但是我们打开本地的7080端口,发现是拒绝访问。这是什么情况?起初我认为是代理的问题,但是我关闭代理后并无卵用。然后又重启电脑还是无效。2.解决方案直到我了解了我使用的命令是基于Gradio实现的。那么有以下几种解决方案(以远程云服务器打开7860端口为例):2.1直接
- LMDeploy 大模型量化部署实践
查里王
人工智能
在浦语的MDeploy大模型量化部署实践课程中,可能需要完成的任务包括:大模型部署背景2、LMDeploy简介环境配置:这个部分你需要安装并设置相关的开发工具和库。这可能包括Python环境、LMDeploy库等等。你需要明确写出你使用的操作系统以及安装所有需要的软件和库的步骤。这些信息可以来自官方文档或者课程提供的指南。服务部署:这个部分你需要使用LMDeploy部署InternLM-Chat-
- AI工程化工具设计
LabVIEW_Python
1,需要有一个方便的爬虫工具,输入名字和内容,可以一键式爬出图片;2,需要有一个方便的改名字的工具,将下载的图片,一键式改名;3,需要有一个方便的,自动化的标注工具,提高标注效率4,需要有一个方便的,图形化的训练和测试工具,自动训练,并给出训练结果报告5,需要有一个方便的部署工具,方便把模型部署到CPU/GPU/ARM上
- 开发者都能玩转的大模型训练
机器学习canvasaigc
前言看了刚结束的亚马逊云科技2023re:Invent大会,了解到AmazonSageMakerCanvas是亚马逊云科技最近刚推出的一种完全托管的机器学习服务,开发者通过AmazonSageMakerCanvas可以快速且轻松地构建、训练机器语言学习模型,最重要的是无代码界面形式的。而且基于亚马逊云科技的云服务器优势,可以直接将模型部署到线上托管环境上,非常方便,且无技术“隔阂”,无缝操作。据我
- hummingbird,一个便于将模型部署到边缘设备的Python库!
漫走云雾
python开发语言边缘计算机器学习
前言随着人工智能和机器学习的快速发展,将训练好的模型部署到生产环境中成为了一个重要的任务。而边缘计算设备,如智能手机、嵌入式系统和物联网设备,也需要能够运行机器学习模型以进行实时推理。PythonHummingbird是一个强大的工具,可以轻松地将机器学习模型部署到边缘设备。本文将详细介绍PythonHummingbird的使用方法,并提供丰富的示例代码。目录前言什么是PythonHummingb
- hummingbird,一个非常好用的 Python 库!
近咫/\ぃ天涯
python开发语言
随着人工智能和机器学习的快速发展,将训练好的模型部署到生产环境中成为了一个重要的任务。而边缘计算设备,如智能手机、嵌入式系统和物联网设备,也需要能够运行机器学习模型以进行实时推理。PythonHummingbird是一个强大的工具,可以轻松地将机器学习模型部署到边缘设备。本文将详细介绍PythonHummingbird的使用方法,并提供丰富的示例代码。什么是PythonHummingbird?Py
- 论文撰写八大技巧与八大心得,一文读懂
墨理学AI
版权:本文由【墨理学AI】原创、首发、各位大佬、敬请查阅声明:作为全网AI领域干货最多的博主之一,❤️不负光阴不负卿❤️日常搬砖帮老板审了不少Paper,总结一些心得分享给各位正在路上的科研小伙伴计算机视觉、超分重建、图像修复、目标检测、模型部署都在学习墨理学AI论文撰写八大技巧写论文的目的是为了发表,发表论文就需要按照论文的套路来写,不然审稿人就会以“不专业”的理由拒稿。辛辛苦苦做出来的科研成果
- 使用阿里云通义千问14B(Qianwen-14B)模型自建问答系统
wangqiaowq
人工智能
使用阿里云通义千问14B(Qianwen-14B)模型自建问答系统时,调度服务器资源的详情将取决于以下关键因素:模型部署:GPU资源:由于Qianwen-14B是一个大规模语言模型,推理时需要高性能的GPU支持。模型参数量大,推理过程中对显存(GPU内存)的要求高,可能需要多块高端GPU,并且考虑是否支持模型并行或数据并行以充分利用硬件资源。单卡显存需求:根据之前的信息,Qianwen-14B微调
- hummingbird,一个非常好用的 Python 库!
漫走云雾
python开发语言
前言随着人工智能和机器学习的快速发展,将训练好的模型部署到生产环境中成为了一个重要的任务。而边缘计算设备,如智能手机、嵌入式系统和物联网设备,也需要能够运行机器学习模型以进行实时推理。PythonHummingbird是一个强大的工具,可以轻松地将机器学习模型部署到边缘设备。本文将详细介绍PythonHummingbird的使用方法,并提供丰富的示例代码。目录编辑前言什么是PythonHummin
- 读懂 FastChat 大模型部署源码所需的异步编程基础
javastart
pythonpythonfastapigunicorn
原文:读懂FastChat大模型部署源码所需的异步编程基础-知乎目录0.前言1.同步与异步的区别2.协程3.事件循环4.await5.组合协程6.使用Semaphore限制并发数7.运行阻塞任务8.异步迭代器asyncfor9.异步上下文管理器asyncwith10.参考本文是读懂FastChat大模型部署源码系列的第二篇,持续更新中,欢迎关注:不理不理:读懂FastChat大模型部署源码所需的W
- llama2模型部署方案的简单调研-GPU显存占用(2023年7月25日版)
海皇海皇吹
llama人工智能自然语言处理语言模型chatgptgpt-3
先说结论全精度llama27B最低显存要求:28GB全精度llama213B最低显存要求:52GB全精度llama270B最低显存要求:280GB16精度llama27B预测最低显存要求:14GB16精度llama213B预测最低显存要求:26GB16精度llama270B预测最低显存要求:140GB8精度llama27B预测最低显存要求:7GB8精度llama213B预测最低显存要求:13GB8
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓