- 【论文阅读笔记】TimesURL: Self-supervised Contrastive Learning for Universal Time Series
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
TimesURL:Self-supervisedContrastiveLearningforUniversalTimeSeriesRepresentationLearning摘要 学习适用于多种下游任务的通用时间序列表示,并指出这在实际应用中具有挑战性但也是有价值的。最近,研究人员尝试借鉴自监督对比学习(SSCL)在计算机视觉(CV)和自然语言处理(NLP)中的成功经验,以解决时间序列表示的问题。
- Prompt相关论文阅读(02)--Auto-CoT(2024-11-25)
zhilanguifang
论文promptengineering论文阅读笔记
论文阅读笔记2024-11-24~2024-11-25Auto-CoT:AutomaticChainofThoughtPromptinginLargeLanguageModels(ICLR2023)碎碎念:复现代码和笔记保存到gitee仓库上海交通大学的学生在亚马逊实习的时候的成果ICLR2023摘要:LLM能够通过生成中间推理步骤执行复杂的推理。提供这些步骤用于提示演示叫做思维链提示CoT。Co
- 2025年6月文章一览
python
2025年6月编程人总共更新了3篇文章:1.2025年5月文章一览2.《算法导论(第4版)》阅读笔记:p175-p1813.《BuildingRESTAPIswithFlask》读后感本月在读3本,阅读完一本——《BuildingRESTAPIswithFlask》。读完《BuildingRESTAPIswithFlask》,有两点感受最深:一、学有所用是效果最好的。其实在2019年就接触了Mar
- YOLOv12_ultralytics-8.3.145_2025_5_27部分代码阅读笔记-split_dota.py
红色的山茶花
YOLO笔记深度学习
split_dota.pyultralytics\data\split_dota.py目录split_dota.py1.所需的库和模块2.defbbox_iof(polygon1:np.ndarray,bbox2:np.ndarray,eps:float=1e-6)->np.ndarray:3.defload_yolo_dota(data_root:str,split:str="train")->
- YOLOv12_ultralytics-8.3.145_2025_5_27部分代码阅读笔记-augment.py
augment.pyultralytics\data\augment.py目录augment.py1.所需的库和模块2.classBaseTransform:3.classCompose:4.classBaseMixTransform:5.classCutMix(BaseMixTransform):6.classCopyPaste(BaseMixTransform):7.defv8_transfo
- UE4 官方文档阅读笔记——材质篇
毛甘木
UE4材质修改androidjava
UE4官方文档阅读笔记——材质篇UE4免费材质:QuixelBridge网站材质基本概念材质编辑器参考1.MaterialExpression向材质节点添加描述2.快捷键C添加注释3.修改注释颜色4.LivePreview实时预览5.LiveNode实时节点6.LiveUpdate实时更新7.AddRerouteNode添加变更路线节点ContenxtMenuUtilityMaterialPale
- UE4官方文档阅读笔记——蓝图可视化编程
毛甘木
UE4ue4
UE4蓝图官方文档阅读笔记蓝图中的结构体变量拆分结构体Break组成结构体Make修改结构体中个别成员SetMemberinStruct自定义结构体内容浏览器-创建高级资源-蓝图-结构体蓝图数组Add添加元素到末尾ClearContainsFilterArrayFindGetInsertLastLengthRemoveRemoveIndexResizeSetArrayElem<
- 优秀开源库muduo阅读笔记
VictorLeo
网路编程服务端编程muduo
muduo阅读笔记目录设计经验和思想服务端编程设计std::bind和std::function(基于closure闭包的编程)参考资料muduo开源库的笔记,比较杂,没有详细整理,现在就这么杂乱放着,等真的需要再好好整理。设计经验和思想对象构造做到线程安全,唯一的要求就是不要暴露this指针.即不要在构造函数中注册任何回调;也不要在构造函数中把this传给跨线程的对象;即便在构造函数的最后一行也
- YOLOv12_ultralytics-8.3.145_2025_5_27部分代码阅读笔记-metrics.py
红色的山茶花
YOLO笔记深度学习
metrics.pyultralytics\utils\metrics.py目录metrics.py1.所需的库和模块2.defbbox_ioa(box1:np.ndarray,box2:np.ndarray,iou:bool=False,eps:float=1e-7)->np.ndarray:3.defbox_iou(box1:torch.Tensor,box2:torch.Tensor,eps
- YOLOv12_ultralytics-8.3.145部分代码阅读笔记-utils.py
红色的山茶花
YOLO笔记深度学习
utils.pyultralytics\nn\modules\utils.py目录utils.py1.所需的库和模块2.def_get_clones(module,n):3.definverse_sigmoid(x,eps=1e-5):4.defmulti_scale_deformable_attn_pytorch(value:torch.Tensor,value_spatial_shapes:t
- YOLOv12_ultralytics-8.3.145_2025_5_27部分代码阅读笔记-loss.py
红色的山茶花
YOLO笔记深度学习
loss.pyultralytics\utils\loss.py目录loss.py1.所需的库和模块2.classVarifocalLoss(nn.Module):3.classFocalLoss(nn.Module):4.classDFLoss(nn.Module):5.classBboxLoss(nn.Module):6.classv8DetectionLoss:7.classE2EDetec
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-utils.py
红色的山茶花
YOLO笔记深度学习
utils.pyultralytics\nn\modules\utils.py目录utils.py1.所需的库和模块2.def_get_clones(module,n):3.defbias_init_with_prob(prior_prob=0.01):4.deflinear_init(module):5.definverse_sigmoid(x,eps=1e-5):6.defmulti_scal
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-predict.py
红色的山茶花
YOLO笔记深度学习
predict.pyultralytics\models\yolo\detect\predict.py目录predict.py1.所需的库和模块2.classDetectionPredictor(BasePredictor):1.所需的库和模块#UltralyticsAGPL-3.0License-https://ultralytics.com/licensefromultralytics.eng
- YOLOv12_ultralytics-8.3.145_2025_5_27部分代码阅读笔记-torch_utils.py
红色的山茶花
YOLO笔记深度学习
torch_utils.pyultralytics\utils\torch_utils.py目录torch_utils.py1.所需的库和模块2.defsmart_inference_mode():3.defautocast(enabled:bool,device:str="cuda"):4.deftime_sync():5.deffuse_conv_and_bn(conv,bn):6.deffu
- YOLOv12_ultralytics-8.3.145_2025_5_27部分代码阅读笔记-autobackend.py
红色的山茶花
YOLO笔记深度学习
autobackend.pyultralytics\nn\autobackend.py目录autobackend.py1.所需的库和模块2.defcheck_class_names(names:Union[List,Dict])->Dict[int,str]:3.defdefault_class_names(data:Optional[Union[str,Path]]=None)->Dict[in
- YOLOv12_ultralytics-8.3.145_2025_5_27部分代码阅读笔记-block.py
红色的山茶花
YOLO笔记深度学习
block.pyultralytics\nn\modules\block.py目录block.py1.所需的库和模块2.classDFL(nn.Module):3.classProto(nn.Module):4.classHGStem(nn.Module):5.classHGBlock(nn.Module):6.classSPP(nn.Module):7.classSPPF(nn.Module):
- 阅读笔记(2) 单层网络:回归
a2507283885
笔记
阅读笔记(2)单层网络:回归该笔记是DataWhale组队学习计划(共度AI新圣经:深度学习基础与概念)的Task02以下内容为个人理解,可能存在不准确或疏漏之处,请以教材为主。1.从泛函视角来看线性回归还记得线性代数里学过的“基”这个概念吗?一组基向量是一组线性无关的向量,它们通过线性组合可以张成一个向量空间。也就是说,这个空间里的任意一个向量,都可以表示成这组基的线性组合。函数其实也可以看作是
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 【论文阅读笔记】《CodeS: Towards Building Open-source Language Models for Text-to-SQL 》
柠石榴
text2sql论文论文阅读笔记语言模型
文章目录一、论文基本信息1.文章标题2.所属刊物/会议3.发表年份4.作者列表5.发表单位二、摘要三、解决问题四、创新点五、自己的见解和感想六、研究背景七、研究方法模型实验数据评估指标八、总结九、相关重要文献一、论文基本信息1.文章标题CodeS:TowardsBuildingOpen-sourceLanguageModelsforText-to-SQL2.所属刊物/会议未明确标注(会议缩写为“C
- Knowledge Graph Contrastive Learning for Recommendation(KGCL)阅读笔记
forever0827
知识图谱笔记人工智能推荐算法
现有知识图谱(KG)的稀疏性和噪声使得项目-实体依赖关系偏离了反映其真实特征,从而显着放大了噪声效应,阻碍了用户偏好的准确表示。为了填补这一研究空白,作者设计了一个通用的知识图对比学习框架(KGCL),该框架可以减轻知识图增强推荐系统的信息噪声。论文链接:https://doi.org/10.1145/3477495.3532009代码链接:https://github.com/yuh-yang/
- 《深入理解Apache Dubbo与实战》第三章的阅读笔记
我在阳澄湖畔吃炸鸡
后端JAVADubbojava
文章目录前言一、注册中心概述1.简介2.工作流程二、Zookeeper注册1.原理2.发布/订阅三、Redis的注册四、缓存五、设计模式前言本文是《深入理解ApacheDubbo与实战》第三章的阅读笔记。第三章的主要内容是讲注册中心,书中主要围绕:1.注册中心的工作流程2.注册中心的数据结构3.订阅发布的实现4.缓存机制5.重试机制6.设计模式这几个部分讲解一、注册中心概述1.简介Dubbo通过注
- 《算法导论(第4版)》阅读笔记:p175-p181
算法
《算法导论(第4版)》学习第31天,p175-p181总结,总计7页。一、技术总结无。二、英语总结(生词:1)1.amortize(1)amortize:a-("to")+mortus("dead")vt.amortizeoriginallymeans"tokilloff",overtime,itevolvestomean"topayoffgraduallybyperiodicpaymentsof
- 【论文阅读笔记】HaDes幻觉检测benchmark
zsq
论文分享论文阅读笔记NLP大语言模型幻觉
0论文信息题目:AToken-levelReference-freeHallucinationDetectionBenchmarkforFree-formTextGeneration作者:TianyuLiu,YizheZhang,ChrisBrockett,YiMao,ZhifangSui,WeizhuChen,BillDolan会议:ACL,2022链接:https://arxiv.org/ab
- 论文阅读笔记—— Multi-attentional Deepfake Detection
jessIoss
论文阅读笔记DeepFake论文阅读笔记
文章目录Multi-attentionalDeepfakeDetection背景创新贡献方法注意图正则化的区域独立性损失注意力引导的数据增强实验Multi-attentionalDeepfakeDetection来源:CVPR2021作者:HanqingZhao1WenboZhou1,†DongdongChen2TianyiWei1WeimingZhang1,†NenghaiYu1单位:Unive
- [论文阅读笔记] Learning Transferable Visual Models From Natural Language Supervision
Heartache Doctor
笔记论文阅读笔记
Abstract将LLM带来的语言zero-shot能力扩展到图像领域,让图像pretrain不再局限于由数据集定义的类别,从而大幅度提升在downstream任务zero-shot的精度。文章提供了从零预训练的CLIP模型,用以训练的大数据集,以及基于对比学习的对齐方案。IntroductionNLP领域下,使用大量数据pretrain>使用高质量标注数据集。→\rightarrow→CV是否也
- GLIDE论文阅读笔记与DDPM(Diffusion model)的原理推导
大写-凌祁
论文阅读笔记人工智能深度学习python机器学习计算机视觉
Abstract扩散模型(Diffusionmodel)最近被证明可以生成高质量的合成图像,尤其是当它们与某种引导技术结合使用时,可以在生成结果的多样性与保真度之间进行权衡。本文探讨了在文本条件图像生成任务中使用扩散模型,并比较了两种不同的引导策略:CLIP引导和无分类器引导。我们发现,人类评估者更倾向于使用无分类器引导方法,无论是在照片真实感还是与文本描述的匹配度方面,该方法通常都能生成具有高度
- 论文阅读笔记——FLOW MATCHING FOR GENERATIVE MODELING
寻丶幽风
Background论文阅读笔记流匹配扩散模型人工智能
FlowMatching论文扩散模型:根据中心极限定理,对原始图像不断加高斯噪声,最终将原始信号破坏为近似的标准正态分布。这其中每一步都构造为条件高斯分布,形成离散的马尔科夫链。再通过逐步去噪得到原始图像。Flowmatching采取直接将已知分布(如白噪声)转换为真实数据分布来生成数据,并且Flow是基于NormalizingFlow,故而是可微双射。生成过程中变化的概率密度构成一个集合,称为概
- idea两个好用的插件-Code Reading Note与RestfulTool
软件老王
intellij-ideajavaintellijidea
1、问题描述介绍两个idea插件,感觉很好用,记录下。2、问题描述解决2.1CodeReadingNote插件——代码阅读笔记这个插件的原始功能是:对指定代码记录阅读笔记,然后增加到指定代码点,纳尼?看个代码还要把读书笔记写到代码中啊?个人认为有点小鸡肋。。2.1.1需求点(1)idea快捷键有些记不住,比如:Ctrl+Alt+T,使用(if…else,try…catch,for,synchron
- 论文阅读笔记——Step1X-Edit: A Practical Framework for General Image Editing
寻丶幽风
论文阅读笔记论文阅读笔记理解生成模型多模态人工智能
Step1X-Edit论文当前图像编辑数据集规模小,质量差,由此构建了如下数据构造管线。高质量三元组数据(源图像、编辑指令、目标图像)。主体添加与移除:使用Florence-2对专有数据集标注,然后使用SAM2进行分割,再使用ObjectRemovalAlpha进行修复。编辑指令结合Step-1o和GPT-4o生成,然后人工审查有效性。主体替换与背景更改:使用Florence-2对专有数据集标注,
- 《算法导论(第4版)》阅读笔记:p162-p163
算法
《算法导论(第4版)》学习第28天,p162-p163总结,总计2页。一、技术总结1.heapsort(1)(binary)heap(堆/二叉堆)(2)completebinarytree(完全二叉树)(3)max-heap(最大堆)定义:A[PARENT(i)]≥A[i]。看了很多定义,不得不说还是这个定义最简洁,准确。(4)min-heap(最小堆)定义:A[PARENT(i)]≤A[i]。2
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,