- MIPI解决方案 ICN6202:MIPI DSI转LVDS转换芯片
TE13530609500
单片机嵌入式硬件
型号:ICN6202:MIPIDSITOLVDS功能:ICN6202是一颗MIPIDSI转LVDS的桥接芯片,其应用图如下:产品特征:输入:MIPIDSI支持MIPI®D-PHYVersion1.00.00和MIPI®DSIVersion1.02.00.可接收MIPIDSI18bppRGB666and24bppRGB888packets4lanedata+1laneclock4对数据线可以选择1、
- nvm切换node版本命令
在下,杨江河
JAVA开发中遇到的问题linux运维服务器
使用nvm切换Node版本的命令如下:查看已安装的Node版本:在命令行中输入nvmlist或nvmls,这将显示所有已安装的Node版本,并指示当前正在使用的版本。1查看可安装的Node版本:输入nvmlistavailable,这将显示可以安装的Node版本列表。安装指定版本的Node:使用命令nvminstall,例如nvminstall18.20.0。12切换到指定的
- 安装指定版本的pnpm
在下,杨江河
JAVA开发中遇到的问题javavue.js
要安装指定版本的pnpm,可以使用以下方法:方法1:使用pnpm安装指定版本你可以通过pnpm的add命令来安装指定版本:pnpmadd-gpnpm@例如,安装pnpm的7.0.0版本:
[email protected]方法2:使用npm安装指定版本如果你之前是通过npm安装的pnpm,可以使用npm来安装指定版本:npminstall-gpnpm@例如,安装pnpm的7.0.0版本:npmi
- conda虚拟环境的离线迁移
Lsy_0408
anaconda
假定A为能上网的需要迁移出环境的机器;B为不能上网的需要迁移入环境的机器。方法一:直接拷贝envs下的整个已有环境先下载A机中envs目录下的已有环境文件夹,并将其上传至B机上然后使用以下命令:condacreate-n[new_envs_name]--clone[pathtoenvs_names]--offline注:-n[new_envs_name]:和正常创建conda的一样,创建新的虚拟环
- 【深度学习】计算机视觉(CV)-图像分类-ResNet(Residual Network,残差网络)
IT古董
深度学习人工智能深度学习计算机视觉分类
ResNet(ResidualNetwork,残差网络)是一种深度卷积神经网络(CNN)架构,由何恺明(KaimingHe)等人在2015年提出,最初用于ImageNet竞赛,并在分类任务上取得了冠军。ResNet的核心思想是残差学习(ResidualLearning),它通过跳跃连接(SkipConnections)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得非常深的网络(如50层、1
- try-except 中except IndexError与 ValueError的区别
HaoChen/ChenHao
python
案例1:try-except-ValueErrorw="我叫陈浩,毕业于谢菲尔德大学"try:w4=w.index("陈浩是最好的学生")print(w4)#输出结果:ValueError:substringnotfound,因为这里报错了,所以原字符串里面并没有这个字符串“陈浩是最好的学生”exceptValueError:print("ValueError:substringnotfound"
- 数据库MySQL 8.0.32安装包网盘资源下载(附教程)
听风说雨的人儿
数据库mysql百度云
如大家所熟悉的,MySQL是一个开源的关系型数据库管理系统(RDBMS)。它使用SQL(结构化查询语言)来管理数据,允许用户定义表、字段、索引和关系,并通过SQL语句来查询、更新和管理数据。MySQL支持多种操作系统,包括Windows、Linux和MacOS等,并且广泛用于各种应用程序中,如Web应用程序、数据仓库和电子商务系统等。MySQL的优势:成本效益与开源特性作为一个开源数据库,MySQ
- 数据结构:利用邻接矩阵构造图及图的输出c++
Belieber53
c++数据结构算法
输入:请输入顶点数及弧数请按照(顶点,顶点,权值)格式输入各边依附的顶点及权值输出:图的结构如下,用邻接矩阵输出#include#include#include#defineINFINITYINT_MAX//最大值#defineMAX_VERTEX_NUM20//最大顶点个数#defineFALSE0#defineTRUE1#defineOK1#defineERROR-2#defineOVERFL
- 【深度学习基础】什么是注意力机制
我的青春不太冷
深度学习人工智能注意力机制
文章目录一、注意力机制的核心地位:从补充到主导二、技术突破:从Transformer到多模态融合三、跨领域应用:从NLP到通用人工智能四、未来挑战与趋势结语参考链接注意力机制:深度学习的核心革命与未来基石在深度学习的发展历程中,注意力机制(AttentionMechanism)的引入堪称一场革命。它不仅解决了传统模型的根本性缺陷,更通过动态聚焦关键信息的能力,重塑了人工智能处理复杂任务的范式。本文
- 【机器学习】多元线性回归
T0uken
Python全栈开发1024程序员节机器学习算法线性回归
在实际应用中,许多问题都包含多个特征(输入变量),而不仅仅是单个输入变量。多元线性回归是线性回归的扩展,它能够处理多个输入特征并建立它们与目标变量的线性关系。本教程将系统性推演多元线性回归,包括向量化处理、特征放缩、梯度下降的收敛性和学习率选择等,并使用numpy实现。最后,我们会通过sklearn快速实现多元线性回归模型。多元线性回归模型简介多元线性回归的模型公式为:y=X⋅w+by=X\cdo
- Java基础面试题day02——数据类型
华农第一蒟蒻
面试java开发语言
1.八种基本的数据类型?Java支持的数据类型分为两类:基本数据类型和引用数据类型基本数据类型:数值型:整数类型byte、short、int、long浮点类型float、double字符型:char布尔型:boolean2.long和int可以互转吗?可以;由于long类型的范围比int类型大,因此将int转换为long是安全的,而将long转换为int可能会导致数据丢失或者溢出。将int转换为l
- Java中JWT(JSON Web Token)的运用
华农第一蒟蒻
java修炼javajson前端springboottoken
目录1.JWT的结构2.JWT的优点3.JWT的流转过程4.具体案例一、项目结构二、依赖配置三、用户模型四、JWT工具类五、JWT请求过滤器六、安全配置七、身份验证控制器八、测试JWTJWT(JSONWebToken)是一种开放标准(RFC7519),用于在网络应用环境间以紧凑的方式安全地传递信息。JWT可以被用作身份验证和信息交换的手段,特别适合用于前后端分离的应用程序。1.JWT的结构JWT由
- springboot中的配置类Configuration
华农第一蒟蒻
java修炼springboot后端java
一、配置类的定义和作用配置类是用来配置Spring应用程序上下文的Java类。它通过使用特定的注解和方法,为应用程序提供各种配置信息,使得Spring容器能够正确地初始化和管理应用程序的各个组件。主要作用替代传统XML配置在传统的Spring应用中,通常使用XML文件来配置bean、数据源、事务管理等。而在SpringBoot中,配置类可以替代大部分的XML配置,使得配置更加简洁、易读和易于维护。
- 使用Python构建论坛爬虫:抓取论坛主题、标签和讨论量
Python爬虫项目
python爬虫开发语言信息可视化金融
引言随着互联网的发展,论坛作为一个信息交流的地方,承载了大量的讨论内容、主题和标签。通过抓取论坛的数据,用户可以了解最热的话题、讨论量大的主题以及与特定标签相关的内容。本篇博客将介绍如何使用Python构建一个论坛数据抓取爬虫,从论坛网站上抓取主题、标签和讨论量,并对数据进行存储和分析。目标与背景我们的目标是从多个论坛网站抓取以下内容:论坛主题:讨论的主要内容或话题。标签:与主题相关的分类信息。讨
- 产品发布标准(项目实操)
初级代码游戏
软件工程产品发布
产品发布标准概述本产品包含一套软件和几款不同的硬件。说明硬件硬件差异架构(ARM32/ARM64)操作系统和版本(文件系统和系统库)内存存储(持久和易失)串口和网口的名称和数量启动脚本此脚本在硬件上电后自动执行,在适当的初始化后进入预设目录启动软件的启动命令,并监控启动命令,返回0表示计划性退出,无需额外操作,否则表示软件运行异常,硬件应重新启动软件启动命令start.sh,工作路径为命令所在位置
- Windows操作系统部署Tomcat详细讲解
web15117360223
面试学习路线阿里巴巴windowstomcatjava
Tomcat是一个开源的JavaServlet容器,用于处理JavaWeb应用程序的请求和响应。以下是关于Tomcat的用法大全:一、安装Tomcat下载访问ApacheTomcat官方网站(https://tomcat.apache.org/),根据你的操作系统(如Windows、Linux、macOS)和需求选择合适的版本进行下载。例如,对于开发环境,通常选择较新的稳定版本。安装(以Windo
- 【第15章:量子深度学习与未来趋势—15.3 量子深度学习在图像处理、自然语言处理等领域的应用潜力分析】
再见孙悟空_
#【深度学习・探索智能核心奥秘】深度学习机器学习人工智能音视频自然语言处理量子深度学习量子学习未来
一、开篇:为什么我们需要关注这场"量子+AI"的世纪联姻?各位技术爱好者们,今天我们要聊的这个话题,可能是未来十年最值得押注的技术革命——量子深度学习。这不是简单的"1+1=2"的物理叠加,而是一场可能彻底改写AI发展轨迹的范式转移。想象这样一个场景:你现在训练一个GPT-5级别的模型,不需要耗费价值上亿美元的算力资源,不需要等待数周的训练时间,甚至不需要纠结于模型参数是否过拟合。这就是量子深度学
- 【第15章:量子深度学习与未来趋势—15.1 量子计算基础与量子机器学习的发展背景】
再见孙悟空_
#【深度学习・探索智能核心奥秘】机器翻译自然语言处理计算机视觉量子计算人工智能深度学习机器学习
想象一下,你正在用ChatGPT生成一篇小说,突然它卡在"主角穿越虫洞"的情节上——这不是因为想象力枯竭,而是传统计算机的晶体管已经烧到冒烟。当前AI大模型的参数规模每4个月翻一番,但摩尔定律的终结让经典计算机的算力增长首次跟不上AI的进化速度。这时候,量子计算带着它的"超能力"登场了:1台50量子位的量子计算机,处理某些问题的速度可达超级计算机的1亿倍。这场算力革命,正在改写深度学习的游戏规则。
- 数据结构:图;邻接矩阵和邻接表
muxue178
数据结构算法
邻接矩阵:1.概念:邻接矩阵是图的存储结构之一,通过二维数组表示顶点间的连接关系。2.具体例子:一.无向图邻接矩阵示例:示例图(顶点:A、B、C,边:A-B、B-C):邻接矩阵:ABCA010B101C010特点:矩阵对称,主对角线为0(无自环边)。顶点B的度为2,对应第2行/列非零元素数量。非零元素总数=边数×2(无向图双向性)。二、有向图邻接矩阵示例示例图(顶点:V1→V2、V2→V3、V3→
- 使用bitnamiredis-sentinel部署Redis 哨兵模式
m0_67265654
面试学习路线阿里巴巴sentinelredis数据库
使用bitnami/redis-sentinel部署Redis哨兵模式为什么使用Bitnami镜像?Bitnami密切跟踪上游源代码更改,并使用我们的自动化系统及时发布此镜像的新版本。借助Bitnami镜像,可以尽快提供最新的错误修复和功能。Bitnami容器、虚拟机和云镜像使用相同的组件和配置方法-可以根据你的项目需求轻松切换格式。我们所有的镜像都基于minideb,这是一个基于Debian的极
- NCHAR_CS和CHAR_CS,导致UNION ALL 时,提示SQL 错误 [12704] [72000]: ORA-12704: 字符集不匹配
在下,杨江河
JAVA开发中遇到的问题sqloracle数据库
检查涉及的数据表和列的字符集设置--查询表的字符集SELECTparameter,valueFROMnls_database_parametersWHEREparameterLIKE'NLS_CHARACTERSET';--查询列的字符集(对于特定表)SELECTcolumn_name,character_set_nameFROMall_tab_columnsWHEREtable_name='YO
- Sentinel
华农第一蒟蒻
java修炼sentinel开发语言java
目录一、Sentinel简介核心特性二、环境准备1.控制台安装2.SpringBoot集成三、核心功能实战1.流量控制2.熔断降级3.热点参数限流四、高级配置1.规则持久化(Nacos集成)2.集群流控五、生产实践建议一、Sentinel简介Sentinel是阿里巴巴开源的分布式系统流量防卫组件,提供流量控制、熔断降级、系统自适应保护等功能。作为SpringCloudAlibaba核心组件,广泛应
- pytest.fixture详解:如何有效管理测试的前置条件与后置条件
测试不打烊
接口自动化pytest
pytest.fixture是pytest的一个重要特性,用于创建和管理测试的前置条件(setup)和后置条件(teardown)。它允许你为测试提供一些预先准备好的资源或数据,而不需要在每个测试函数中重复这些逻辑。基础概念pytest.fixture是一个装饰器,标记一个函数作为“夹具”(fixture),这个夹具会在每次测试函数运行前被调用,并可以在测试函数中作为参数使用。测试函数中的夹具会自
- iotop 命令详解:深入分析系统 I/O 性能
测试不打烊
性能测试linux运维压力测试
iotop是Linux系统中一个非常有用的命令行工具,类似于top命令,但它专门用于监控进程的磁盘I/O活动。它通过显示每个进程的I/O操作,可以帮助我们定位并分析那些占用过多磁盘资源的进程。本文将详细介绍iotop命令的使用方法、典型输出示例、各项指标的详细解析,并结合异常指标详细分析系统I/O性能问题的解决过程。一、iotop命令使用方法详解iotop命令的主要功能是显示每个进程的I/O读写速
- 网络瓶颈分析与排查:性能测试中的隐秘敌人
测试不打烊
性能测试网络压力测试
性能测试问题定位-网络瓶颈分析与案例解析在性能测试中,网络往往是性能瓶颈的一个关键因素。网络延迟、带宽、连接数等问题都可能影响系统的整体性能。在本文中,我们将结合性能测试的过程,从网络监控、常见的网络瓶颈问题以及如何使用Linux工具(如netstat、iftop、ping、traceroute等)进行详细的瓶颈定位。我们还会通过实际案例进行说明,帮助你更好地理解网络瓶颈的排查方法。1.网络瓶颈的
- ch02离散仿真引擎基础——Unity3D学习
yesor_not
3D游戏学习c#unity游戏游戏策划
ch02离散仿真引擎基础——Unity3D学习一、简答题1.解释游戏对象(GameObjects)和资源(Assets)的区别与联系游戏对象(GameObjects):一般为玩家,敌人,环境等资源(Assets):一般包括声音,脚本,材质等区别与联系:对象一般是一些资源的集合体资源可以被多个对象使用资源作为模版,可实例化游戏中具体的对象。2、下载几个游戏案例,分别总结资源、对象组织的结构(指资源的
- lua 5.1语法约定
xiejunna
java
Lua5.1参考手册由罗伯特·Ierusalimschy路易斯HenriquedeFigueiredo沃尔德蔡氏‚一个版权©2006A¢A€“2012Lua.org,银行业者。免费的根据Lua许可证。内容一个‚·指数一个‚·其他版本一个‚·英语一个‚·portuguAƒAª年代一个‚·espaAƒA±ol1A¢A€“介绍Lua是一个扩展编程语言设计的支持一般过程式编程与数据描述设施。它还提供了很好
- vue h函数
月下第一风流
vue.jsjavascript前端
在Vue.js中,h函数是用于在渲染函数中创建虚拟DOM元素的主要工具。但是,除了h函数之外,还有其他一些辅助函数和工具可以用于渲染函数和组件开发。以下是一些常见的工具和函数:createApp:用于创建Vue应用程序的实例。在Vue3中,这是启动应用的主要方法。defineComponent:用于定义一个组件。在Vue3中,这是一种定义组件的选项式API的替代方法。resolveComponen
- 【瀑布流插件】vue-masonry
春晓_春眠花落
vue.jsjavascript前端
**最近一直在画静态页面,有个图片列表,布局很紧凑,图片宽度一样,高度不一样,但是效果图上都是紧挨在一起,我用普通的v-for循环加css布局,它会以这一行最高的那张图片的高度为准,导致图片高度小的,下一行不能紧挨在一起**如图:但是我要的效果是这样的,如图:依靠vue-masonry,实现了一些简单的功能,可参考这篇文章,讲的比较详细《Vue插件》瀑布流插件vue-masonry的使用与踩坑记录
- vue3 - 【完整源码】实现网页整屏大量图片、div 容器的自适应瀑布流布局,宽高度不固定的列表式瀑布流展示效果(高效无 BUG 网站瀑布流效果,超详细代码注释,可根据需求快速进行改造!)
街尾杂货店&
前端组件与功能(开箱即用)vue3瀑布流布局详细教程vue3图片列表瀑布流组件宽高不固定的div实现瀑布vue3最好用的瀑布流组件插件vue3瀑布流布局完整示例源码
效果图在vue3.js网站项目中,实现图片、普通div容器的瀑布流效果完整示例,支持动态加载数据、自定义一行放多少个、各列之间的间距等等!你可以直接复制组件源码,按照配置文档稍微改改就能用到你的项目中去了,比绝大部分文章提供的示例都要流畅、快速。核心组件源码组件的存放位置无所谓,最后使用的时候能正确引入就行了。创建瀑布流组件Waterfall.vue,复制代码。
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号