给你一个按 非递减顺序 排序的整数数组 nums
,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1:
输入:nums = [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:平方后,数组变为 [16,1,0,9,100] 排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11] 输出:[4,9,9,49,121]
提示:
1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums
已按 非递减顺序 排序
题目的意思很简单,就是把每个数的平方,按从小到大的顺序排个序,再输出出来。
第一想法是先每个数平方一遍,用sort()函数排序一步到位。但是这道题用sort时间复杂度很高,主要考查的是对双指针的理解,所以两种方法都做一遍吧。
为什么选用双指针做法:因为原来的数组是有序的,并且可以有负数,所以平方之后最大值要么在最左边,要么在最右边,在左右两端放两个指针,依次比较排序,就可以得到排好的数组啦
1、用 sort() 一步到位法:
class Solution {
public:
vector sortedSquares(vector& nums) {
vector res;
for(int i : nums)
res.push_back(i * i);
sort(res.begin(),res.end());
return res;
}
};
2、双指针法
class Solution {
public:
vector sortedSquares(vector& nums) {
vector res;
int l = 0, r = nums.size()-1;
while(r >= l){
if(nums[l] * nums[l] >= nums[r] * nums[r]) {
res.push_back(nums[l]*nums[l]);
l++;
}
else {
res.push_back(nums[r]*nums[r]);
r--;
}
}
reverse(res.begin(),res.end());
return res;
}
};
其他语言版本:
java:
class Solution {
public int[] sortedSquares(int[] nums) {
int right = nums.length - 1;
int left = 0;
int[] result = new int[nums.length];
int index = result.length - 1;
while (left <= right) {
if (nums[left] * nums[left] > nums[right] * nums[right]) {
// 正数的相对位置是不变的, 需要调整的是负数平方后的相对位置
result[index--] = nums[left] * nums[left];
++left;
} else {
result[index--] = nums[right] * nums[right];
--right;
}
}
return result;
}
}
python:
class Solution:
def sortedSquares(self, nums: List[int]) -> List[int]:
l, r, i = 0, len(nums)-1, len(nums)-1
res = [float('inf')] * len(nums) # 需要提前定义列表,存放结果
while l <= r:
if nums[l] ** 2 < nums[r] ** 2: # 左右边界进行对比,找出最大值
res[i] = nums[r] ** 2
r -= 1 # 右指针往左移动
else:
res[i] = nums[l] ** 2
l += 1 # 左指针往右移动
i -= 1 # 存放结果的指针需要往前平移一位
return res
给定一个含有 n
个正整数的数组和一个正整数 target
。
找出该数组中满足其和 ≥ target
的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr]
,并返回其长度。如果不存在符合条件的子数组,返回 0
。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3]
是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4] 输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1] 输出:0
提示:
1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 105
题目最后一句的进阶,相当于是提示有O(n)的解法,也有O(n log(n))的解法。
但是,O(n)复杂度是小的那个,进阶反而要设计一个复杂度更大的,一般都应该反着来的,复杂度越小越好啊。所以题目是想引导我们思考别的解题方式。
那就先想想O(n)。第一反应,前缀和。想了想,确实就是O(n)的解法。
至于O(n log(n)),其实是滑动窗口,就像一只毛毛虫,从这个长长的数组上爬过去,身子下面的数字和如果小了,那其他位置不动,就头往前探探,多加几个数字,如果大了,那尾巴就收回来一点,少加几个数字。根据这个原则,毛毛虫爬完一趟,就知道最短的区间长度是多少了。(奇妙の比喻hhh)
class Solution {
public:
int minSubArrayLen(int s, vector& nums) {
int l = 0, r = 0,sum = nums[0];
int len = INT_MAX;
while( 1) {
if(sum < s && r+1 < nums.size()) {
r++;
sum=sum + nums[r];
}
else if(sum >= s)
{
if(len > r - l + 1)len = r - l + 1;
sum=sum - nums[l++];
}
else{
break;
}
}
if(len == INT_MAX)len = 0;
return len;
}
};
其他语言版本:
java:
class Solution {
// 滑动窗口
public int minSubArrayLen(int s, int[] nums) {
int left = 0;
int sum = 0;
int result = Integer.MAX_VALUE;
for (int right = 0; right < nums.length; right++) {
sum += nums[right];
while (sum >= s) {
result = Math.min(result, right - left + 1);
sum -= nums[left++];
}
}
return result == Integer.MAX_VALUE ? 0 : result;
}
}
python:
class Solution:
def minSubArrayLen(self, s: int, nums: List[int]) -> int:
l = len(nums)
left = 0
right = 0
min_len = float('inf')
cur_sum = 0 #当前的累加值
while right < l:
cur_sum += nums[right]
while cur_sum >= s: # 当前累加值大于目标值
min_len = min(min_len, right - left + 1)
cur_sum -= nums[left]
left += 1
right += 1
return min_len if min_len != float('inf') else 0
给你一个正整数 n
,生成一个包含 1
到 n2
所有元素,且元素按顺时针顺序螺旋排列的 n x n
正方形矩阵 matrix
。
示例 1:
输入:n = 3 输出:[[1,2,3],[8,9,4],[7,6,5]]
示例 2:
输入:n = 1 输出:[[1]]
提示:
1 <= n <= 20
看起来是个模拟题,一圈一圈的模拟。那就按数字顺序,从左上角1开始一圈圈遍历。
比较复杂,可以看下官方的动画图解:59.螺旋矩阵II题解——力扣
class Solution {
public:
vector> generateMatrix(int n) {
vector> ans(n, vector(n, 0));
int row = 0, col = 0;
for(int i = 1; i <= n * n;){
//先向右,行不变,列+1
while(col < n && ans[row][col] == 0 && i <= n * n){
ans[row][col++] = i++;
}
row++;
col--;
//向下,列不变,行+1
while(row < n && ans[row][col] == 0 && i <= n * n){
ans[row++][col] = i++;
}
row--;
col--;
//向左,行不变,列-1
while(col >= 0 && ans[row][col] == 0 && i <= n * n){
ans[row][col--] = i++;
}
row--;
col++;
//向上,列不变,行-1
while(row >= 0 && ans[row][col] == 0 && i <= n * n){
ans[row--][col] = i++;
}
row++;
col++;
}
return ans;
}
};
其他语言版本:
java:
class Solution {
public int[][] generateMatrix(int n) {
int loop = 0; // 控制循环次数
int[][] res = new int[n][n];
int start = 0; // 每次循环的开始点(start, start)
int count = 1; // 定义填充数字
int i, j;
while (loop++ < n / 2) { // 判断边界后,loop从1开始
// 模拟上侧从左到右
for (j = start; j < n - loop; j++) {
res[start][j] = count++;
}
// 模拟右侧从上到下
for (i = start; i < n - loop; i++) {
res[i][j] = count++;
}
// 模拟下侧从右到左
for (; j >= loop; j--) {
res[i][j] = count++;
}
// 模拟左侧从下到上
for (; i >= loop; i--) {
res[i][j] = count++;
}
start++;
}
if (n % 2 == 1) {
res[start][start] = count;
}
return res;
}
}
python:
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
nums = [[0] * n for _ in range(n)]
startx, starty = 0, 0 # 起始点
loop, mid = n // 2, n // 2 # 迭代次数、n为奇数时,矩阵的中心点
count = 1 # 计数
for offset in range(1, loop + 1) : # 每循环一层偏移量加1,偏移量从1开始
for i in range(starty, n - offset) : # 从左至右,左闭右开
nums[startx][i] = count
count += 1
for i in range(startx, n - offset) : # 从上至下
nums[i][n - offset] = count
count += 1
for i in range(n - offset, starty, -1) : # 从右至左
nums[n - offset][i] = count
count += 1
for i in range(n - offset, startx, -1) : # 从下至上
nums[i][starty] = count
count += 1
startx += 1 # 更新起始点
starty += 1
if n % 2 != 0 : # n为奇数时,填充中心点
nums[mid][mid] = count
return nums
欢迎点赞,收藏,评论,你的鼓励就是我创作的最大动力!(๑╹◡╹)ノ"""
版权声明:本文为CSDN博主「渡梦酒」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:渡梦酒的博客_CSDN博客-csdn领域博主