算法训练day38|动态规划 part01(理论基础、LeetCode509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯)

文章目录

  • 理论基础
    • 什么是动态规划
    • 动态规划的解题步骤
  • 509. 斐波那契数
    • 思路分析
    • 代码实现
    • 思考总结
  • 70. 爬楼梯
    • 思路分析
    • 代码实现
    • 思考总结
  • 746. 使用最小花费爬楼梯
    • 思路分析
    • 代码实现

理论基础

算法训练day38|动态规划 part01(理论基础、LeetCode509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯)_第1张图片

什么是动态规划

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,

例如:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。

但如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。

所以贪心解决不了动态规划的问题。

其实大家也不用死扣动规和贪心的理论区别,后面做做题目自然就知道了。

大家知道动规是由前一个状态推导出来的,而贪心是局部直接选最优的,对于刷题来说就够用了。

动态规划的解题步骤

动态规划五部曲

对于动态规划问题,我将拆解为如下五步曲!

  • 确定dp数组(dp table)以及下标的含义
  • 确定递推公式
  • dp数组如何初始化
  • 确定遍历顺序
  • 举例推导dp数组

一些同学可能想为什么要先确定递推公式,然后在考虑初始化呢?

因为一些情况是递推公式决定了dp数组要如何初始化!

后面的讲解中我都是围绕着这五点来进行讲解。

可能刷过动态规划题目的同学可能都知道递推公式的重要性,感觉确定了递推公式这道题目就解出来了。

其实 确定递推公式 仅仅是解题里的一步而已!

一些同学知道递推公式,但搞不清楚dp数组应该如何初始化,或者正确的遍历顺序,以至于记下来公式,但写的程序怎么改都通过不了。

后序的讲解的大家就会慢慢感受到这五步的重要性了。

动态规划debug

找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果。

然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。

如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题了。

如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。


509. 斐波那契数

题目链接
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

示例 1:
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:
输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:
输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:
0 <= n <= 30

思路分析

动规五部曲:

这里我们要用一个一维dp数组来保存递归的结果

确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]

确定递推公式
为什么这是一道非常简单的入门题目呢?

因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

dp数组如何初始化
题目中把如何初始化也直接给我们了,如下:

dp[0] = 0;
dp[1] = 1;

确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

举例推导dp数组
按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:

0 1 1 2 3 5 8 13 21 34 55

如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。

代码实现

class Solution {
public:
    int fib(int n) {
        if(n<=1) return n;
        vector<int> dp(n+1);
        dp[0]=0;
        dp[1]=1;
        for(int i=2;i<=n;i++){
            dp[i]=dp[i-1]+dp[i-2];
        }
        return dp[n];
    }
};

递归法:

class Solution {
public:
    int fib(int n) {
        if(n<=1) return n;
        return fib(n-1)+fib(n-2);
    }
};

思考总结

动规五部曲将在接下来的动态规划讲解中发挥重要作用,要记住


70. 爬楼梯

题目链接
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。

示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1 阶 + 1 阶
2 阶

示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1 阶 + 1 阶 + 1 阶
1 阶 + 2 阶
2 阶 + 1 阶

思路分析

爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。

那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。

所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。

我们来分析一下,动规五部曲:

定义一个一维数组来记录不同楼层的状态

  1. 确定dp数组以及下标的含义

dp[i]: 爬到第i层楼梯,有dp[i]种方法

  1. 确定递推公式

如何可以推出dp[i]呢?

从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。
首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。
还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。
那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!
所以dp[i] = dp[i - 1] + dp[i - 2] 。

在推导dp[i]的时候,一定要时刻想着dp[i]的定义,否则容易跑偏。
这体现出确定dp数组以及下标的含义的重要性!

  1. dp数组如何初始化

再回顾一下dp[i]的定义:爬到第i层楼梯,有dp[i]种方法。

那么i为0,dp[i]应该是多少呢,这个可以有很多解释,但基本都是直接奔着答案去解释的。

例如强行安慰自己爬到第0层,也有一种方法,什么都不做也就是一种方法即:dp[0] = 1,相当于直接站在楼顶。

但总有点牵强的成分。

那还这么理解呢:我就认为跑到第0层,方法就是0啊,一步只能走一个台阶或者两个台阶,然而楼层是0,直接站楼顶上了,就是不用方法,dp[0]就应该是0.

其实这么争论下去没有意义,大部分解释说dp[0]应该为1的理由其实是因为dp[0]=1的话在递推的过程中i从2开始遍历本题就能过,然后就往结果上靠去解释dp[0] = 1。

从dp数组定义的角度上来说,dp[0] = 0 也能说得通。

需要注意的是:题目中说了n是一个正整数,题目根本就没说n有为0的情况。

所以本题其实就不应该讨论dp[0]的初始化!

我相信dp[1] = 1,dp[2] = 2,这个初始化大家应该都没有争议的。

所以我的原则是:不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。

  1. 确定遍历顺序

从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的

  1. 举例推导dp数组

举例当n为5的时候,dp table(dp数组)应该是这样的
算法训练day38|动态规划 part01(理论基础、LeetCode509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯)_第2张图片

此时大家应该发现了,这不就是斐波那契数列么!

唯一的区别是,没有讨论dp[0]应该是什么,因为dp[0]在本题没有意义!

代码实现

class Solution {
public:
    int climbStairs(int n) {
        vector<int> dp(n+1);
        dp[0]=1;
        dp[1]=1;
        for(int i=2;i<=n;i++){
            dp[i]=dp[i-1]+dp[i-2];
        }
        return dp[n];
    }
};

思考总结

这道题目和动态规划:斐波那契数题目基本是一样的,但是会发现本题相比动态规划:斐波那契数难多了,为什么呢?

关键是 动态规划:斐波那契数题目描述就已经把动规五部曲里的递归公式和如何初始化都给出来了,剩下几部曲也自然而然的推出来了。

而本题,就需要逐个分析了,大家现在应该初步感受出关于动态规划动规五部曲了。

简单题是用来掌握方法论的,例如昨天斐波那契的题目够简单了吧,但昨天和今天可以使用一套方法分析出来的,这就是方法论!


746. 使用最小花费爬楼梯

题目链接
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。

示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。

  • 支付 15 ,向上爬两个台阶,到达楼梯顶部。
    总花费为 15 。

示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。

  • 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
  • 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
  • 支付 1 ,向上爬一个台阶,到达楼梯顶部。

总花费为 6 。

思路分析

  1. 确定dp数组以及下标的含义

使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。

dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。

对于dp数组的定义,大家一定要清晰!

  1. 确定递推公式

可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。

dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?

一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

  1. dp数组如何初始化

看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。

那么 dp[0] 应该是多少呢? 根据dp数组的定义,到达第0台阶所花费的最小体力为dp[0],那么有同学可能想,那dp[0] 应该是 cost[0],例如 cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 的话,dp[0] 就是 cost[0] 应该是1。

这里就要说明本题力扣为什么改题意,而且修改题意之后 就清晰很多的原因了。

新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。

所以初始化 dp[0] = 0,dp[1] = 0;

  1. 确定遍历顺序

最后一步,递归公式有了,初始化有了,如何遍历呢?

本题的遍历顺序其实比较简单,简单到很多同学都忽略了思考这一步直接就把代码写出来了。

因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

  1. 举例推导dp数组

拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:

算法训练day38|动态规划 part01(理论基础、LeetCode509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯)_第3张图片

代码实现

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size()+1);
        dp[0]=0;
        dp[1]=0;
        for(int i=2;i<dp.size();i++){
            dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[dp.size()-1];
    }
};

你可能感兴趣的:(算法,动态规划,算法,leetcode,数据结构)