- 大数据面试必备:Kafka性能优化 Producer与Consumer配置指南
Kafka面试题-在Kafka中,如何通过配置优化Producer和Consumer的性能?回答重点在Kafka中,通过优化Producer和Consumer的配置,可以显著提高性能。以下是一些关键配置项和策略:1、Producer端优化:batch.size:批处理大小。增大batch.size可以使Producer每次发送更多的消息,但要注意不能无限制增大,否则会导致内存占用过多。linger
- Beam2.61.0版本消费kafka重复问题排查
隔壁寝室老吴
kafkalinq分布式
1.问题出现过程在测试环境测试flink的job的任务消费kafka的情况,通过往job任务发送一条消息,然后flinkwebui上消费出现了两条。然后通过重启JobManager和TaskManager后,任务从checkpoint恢复后就会出现重复消费。当任务不从checkpoint恢复的时候,任务不会出现重复消费的情况。由此可见是beam从checkpoint恢复的时候出现了重复消费的问题。
- 支持java8的kafka版本
兮动人
kafka分布式支持java8的kafka版本
文章目录1.Kafka支持Java8的版本范围2.官方建议与兼容性3.版本迁移建议4.关键时间点5.注意事项6.总结1.Kafka支持Java8的版本范围Kafka2.x和3.x版本:Kafka2.x和3.x版本(如2.8.0、3.0.0等)理论上支持Java8,但官方已逐步弃用对Java8的支持。Kafka3.0:官方在3.0版本中弃用Java8(但仍允许使用),并强烈建议升级到Java11或更
- Flink SQL Connector Kafka 核心参数全解析与实战指南
Edingbrugh.南空
kafkaflink大数据flinksqlkafka
FlinkSQLConnectorKafka是连接FlinkSQL与Kafka的核心组件,通过将Kafka主题抽象为表结构,允许用户使用标准SQL语句完成数据读写操作。本文基于ApacheFlink官方文档(2.0版本),系统梳理从表定义、参数配置到实战调优的全流程指南,帮助开发者高效构建实时数据管道。一、依赖配置与环境准备1.1Maven依赖引入在FlinkSQL项目中使用Kafka连接器需添加
- 大数据领域数据工程的消息中间件选型
大数据洞察
大数据与AI人工智能大数据ai
大数据领域数据工程的消息中间件选型关键词:消息中间件、数据工程、大数据处理、选型标准、分布式系统、实时数据流、可靠性保障摘要:在大数据领域的数据工程实践中,消息中间件是构建高可靠、高可扩展数据管道的核心组件。本文从技术架构、功能需求、应用场景等维度,系统解析消息中间件选型的关键要素。通过对比Kafka、Pulsar、RabbitMQ、RocketMQ等主流中间件的技术特性,结合数学模型分析吞吐量、
- 【基础篇-消息队列】——详解 RocketMQ 和 Kafka 的消息模型
小志的博客
消息队列消息队列
目录一、引入前提二、通过示例详解RocketMQ和Kafka的消息模型2.1、示例说明2.2、消息生产端2.3、消息消费端2.3.1、单个消费组2.3.2、多个消费组2.3.3、消费组的内部2.3.4、消费位置本文来源:极客时间vip课程笔记一、引入前提我在看《【基础篇-消息队列】——消息模型中的主题和队列有什么区别》这节课的留言时发现,不少同学对RocketMQ和kafka的消息模型理解的还不是
- Python 解析 Kafka 消息队列的高吞吐架构
```htmlPython解析Kafka消息队列的高吞吐架构Python解析Kafka消息队列的高吞吐架构Kafka是一个分布式、高吞吐量的消息队列系统,广泛应用于实时数据处理和流式计算场景。Python作为一种灵活且易于使用的编程语言,在与Kafka集成时提供了多种库支持,例如kafka-python和confluent-kafka。本文将探讨如何使用Python构建高效的Kafka消息队列应用
- SpringBoot整合kafka报could not be established. Broker may not be available.
ls65535
中间件Connectiontonode0(localhost/12couldnotbeestablished.Brokerma
SpringBoot整合kafka报couldnotbeestablished.Brokermaynotbeavailable.报错日志[AdminClientclientId=adminclient-1]Connectiontonode0(localhost/127.0.0.1:9092)couldnotbeestablished.Brokermaynotbeavailable.[AdminCl
- 大数据领域Kafka的性能优化案例分析
AGI大模型与大数据研究院
大数据kafka性能优化ai
大数据领域Kafka的性能优化案例分析关键词:Kafka、性能优化、吞吐量、延迟、分区策略、消息压缩、监控调优摘要:本文深入探讨ApacheKafka在大数据环境中的性能优化策略。我们将从Kafka的核心架构出发,分析影响性能的关键因素,并通过实际案例展示如何通过配置调优、分区策略优化、消息压缩等技术手段显著提升Kafka集群的性能。文章包含详细的性能测试数据、优化前后的对比分析,以及可落地的优化
- Kafka深入学习及运维工作笔记
喝醉酒的小白
Kafkakafka学习运维
目录标题Kafka深入学习及运维工作笔记一、Kafka学习路径总览1.1学习阶段划分1.2学习资源推荐二、Kafka基础入门2.1Kafka核心概念2.1.1基础架构组件2.1.2关键术语解析2.2Kafka工作原理与核心功能2.2.1消息传递机制2.2.2核心功能特性2.3Kafka安装与基本操作2.3.1环境准备2.3.2安装与启动2.3.3基本操作命令三、Kafka进阶学习3.1Kafka架
- 基于Kafka实现企业级大数据迁移的完整指南
亲爱的非洲野猪
kafka大数据linq
在大数据时代,数据迁移已成为企业数字化转型过程中的常见需求。本文将详细介绍如何利用Kafka构建高可靠、高性能的大数据迁移管道,涵盖从设计到实施的完整流程。一、为什么选择Kafka进行数据迁移?Kafka作为分布式消息系统,具有以下独特优势:高吞吐:单集群可支持每秒百万级消息处理低延迟:端到端延迟可控制在毫秒级持久性:数据可持久化存储,防止丢失水平扩展:可轻松扩展应对数据量增长多消费者:支持多个系
- 使用 Apache Kafka 的关键要点:开发者必知指南
亲爱的非洲野猪
apachekafka分布式
ApacheKafka是一个高吞吐量、分布式、可水平扩展的消息队列系统,广泛应用于实时数据流处理、日志聚合、事件驱动架构等场景。本文将整理Kafka的核心关键点,帮助开发者高效使用Kafka。1.Kafka核心概念(1)基本组件Producer:消息生产者,向Kafka发送数据。Consumer:消息消费者,从Kafka读取数据。Broker:Kafka服务器节点,负责存储和转发消息。Topic:
- RocketMQ--为什么性能不如Kafka?
IT利刃出鞘
MQrocketmqkafka分布式
原文网址:RocketMQ--为什么性能不如Kafka?-CSDN博客简介本文介绍RocketMQ为什么性能不如Kafka?阿里中间件团队对它们做过压测,同样条件下,kafka比RocketMQ快50%左右。为什么RocketMQ参考了Kafka的架构,却不能跟kafka保持一样的性能呢?读消息的方式为了防止消息队列的消息丢失,一般不会放内存里,而是放磁盘上。消息从消息队列的磁盘,发送到消费者,过
- 69、Flink 的 DataStream Connector 之 Kafka 连接器详解
猫猫爱吃小鱼粮
Flink-1.19从0到精通flinkkafka大数据
1.概述Flink提供了Kafka连接器使用精确一次(Exactly-once)的语义在Kafkatopic中读取和写入数据。目前还没有Flink1.19可用的连接器。2.KafkaSourcea)使用方法KafkaSource提供了构建类来创建KafkaSource的实例。以下代码片段展示了如何构建KafkaSource来消费“input-topic”最早位点的数据,使用消费组“my-group
- Kafka 核心术语详解
showyoui
Kafkakafka分布式
文章目录1.集群架构层Cluster(集群)Broker(代理服务器)2.存储架构层Topic(主题)Partition(分区)Message(消息)3.副本机制Leader/FollowerISR(In-SyncReplicas)副本加入ISR的条件副本被移出ISR的条件Leader选举机制ISR维护机制4.客户端Producer(生产者)Consumer(消费者)ConsumerGroup(消
- SSE和Kafka应用场景对比
老兵发新帖
kafka分布式
SSE(Server-SentEvents)和Kafka是两种完全不同定位的技术,分别解决不同场景下的数据流问题。以下是结构化对比:⚡核心定位差异特性SSE(Server-SentEvents)Kafka本质基于HTTP的客户端-服务端单向通信协议分布式消息队列/流处理平台设计目标服务端主动向浏览器推送实时数据高吞吐、持久化、解耦的生产者-消费者模型数据方向单向:服务端→客户端双向:生产者→Kaf
- Spring Boot 集成 Apache Kafka 实战指南
超级小忍
SpringBootspringbootapachekafka
ApacheKafka是一个分布式流处理平台,广泛用于构建实时数据管道、日志聚合系统和事件溯源架构。SpringBoot提供了对Kafka的良好集成支持,使得开发者可以非常便捷地在项目中使用Kafka。本文将手把手教你如何在SpringBoot项目中集成Kafka,包括生产者(Producer)和消费者(Consumer)的实现,并提供完整的代码示例。开发环境准备Java17+Maven或Grad
- 分布式系统中的 Kafka:流量削峰与异步解耦(一)
计算机毕设定制辅导-无忧
#Kafkakafka分布式
引言**在当今数字化时代,分布式系统已成为构建大规模、高并发应用的关键架构。随着业务的快速发展,分布式系统面临着诸多挑战,其中流量高峰和系统组件间的强耦合问题尤为突出。当大量请求瞬间涌入系统,犹如汹涌的潮水,可能导致系统负载过高,响应迟缓,甚至崩溃。而系统中各个组件紧密耦合,相互依赖,牵一发而动全身,一个微小的变化或故障都可能引发连锁反应,影响整个系统的稳定性和可用性。在这样的背景下,Kafka作
- Kafka Streams架构深度解析:从并行处理到容错机制的全链路实践
Edingbrugh.南空
kafkakafka架构
在流处理技术领域,KafkaStreams以其轻量级架构与Kafka生态的深度整合能力脱颖而出。作为构建在Kafka生产者/消费者库之上的流处理框架,它通过利用Kafka原生的分区、副本与协调机制,实现了数据并行处理、分布式协调与容错能力的无缝集成。本文将从架构设计、核心概念到容错机制,全面解析KafkaStreams的技术实现细节。一、KafkaStreams核心架构概述KafkaStreams
- 深度解密消息传递的三大保障
一只牛博
#kafkakafka消息队列消息传递
欢迎来到我的博客,代码的世界里,每一行都是一个故事深度解密消息传递的三大保障前言至少一次传递Kafka如何确保消息至少被传递一次:不同场景下至少一次传递的应用和性能权衡:精确一次传递实现精确一次性传递的机制:性能考虑:最多一次传递实现最多一次传递的机制:注意事项和权衡:前言在数字世界的信息传递中,保障是信息安全的重要支柱。Kafka以其可靠性而著称,但这并非单一的保障,而是三重誓言。本文将引领你穿
- Kafka 主题和分区详解
showyoui
Kafkakafka分布式运维开源大数据
Topic和Paritition基础概念文章目录Topic和Paritition基础概念分区数量设计考量更多分区带来更高吞吐量更多分区需要更多文件句柄Kafka索引机制详解更多分区导致更高不可用性风险更多分区增加端到端延迟更多分区需要客户端更多内存常见问题与解决方案1.主题删除失败2.`__consumer_offsets`占用过多磁盘空间最佳实践建议分区数量规划监控指标性能调优Topic是Kaf
- Redis Stream:实时数据流的处理与存储
foundbug999
redis数据库缓存
RedisStream是Redis5.0引入的一个强大的数据结构,专门用于处理实时数据流。它类似于ApacheKafka和RabbitMQ等消息队列系统,但集成在Redis这个内存数据库中,使得Redis不仅能处理缓存和存储,还能高效地处理实时数据流。本文将深入探讨RedisStream的特性、使用方法以及在实际应用中的优势。一、RedisStream简介RedisStream是一种日志结构,记录
- 探秘Flink Connector加载机制:连接外部世界的幕后引擎
Edingbrugh.南空
flink大数据flink大数据
在Flink的数据处理生态中,SourceFunction负责数据的输入源头,而真正架起Flink与各类外部存储、消息系统桥梁的,则是Connector。从Kafka消息队列到HDFS文件系统,从MySQL数据库到Elasticsearch搜索引擎,Flink通过Connector实现了与多样化外部系统的交互。而这一切交互的基础,都离不开背后强大且精巧的Connector加载机制。接下来,我们将深
- 基于pyspark的北京历史天气数据分析及可视化_实时
大数据CLUB
spark数据分析可视化数据分析数据挖掘sparkhadoop大数据
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、kafka2.8.2开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据写kafka(python)
- 性能监控与智能诊断系统的全流程
智能运维(AIOps)系统架构。核心目标:解决企业面临的性能问题、资源瓶颈、服务异常,实现从被动响应到主动预防、智能诊断的转变。关键特性:全链路覆盖:从日志采集到最终告警展示。实时处理:基于流处理引擎(Storm)快速加工数据。智能分析:引入AI进行根因分析。闭环进化:告警反馈驱动模型训练,系统自学习优化。解耦设计:各模块职责清晰,通过消息队列(Kafka)连接。系统全流程解析(分步详解):起点:
- Spring Boot集成Apache Kafka实现消息驱动
wx_tangjinjinwx
springbootapachekafka
SpringBoot集成ApacheKafka实现消息驱动大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!ApacheKafka是一个分布式流处理平台,广泛用于构建实时数据管道和流处理应用程序。SpringBoot提供了对ApacheKafka的集成支持,使得在SpringBoot应用中实现消息驱动变得简单。本文将介绍如何在SpringBoot中集成ApacheK
- Kafka架构全景深度解析与实战
北漂老男人
kafkakafka架构
Kafka架构全景深度解析与实战本文将系统性介绍Kafka架构及核心角色(Broker、Producer、Consumer、Controller)、核心概念(Topic、Partition、Replica、分区机制),深入剖析主流程源码与设计思想,总结优化与高阶应用,结合实际场景与分布式理论,助你全面掌握Kafka。一、Kafka整体架构概览Kafka是分布式、高吞吐、可扩展的消息队列系统,核心架
- Kafka架构全景深度解析与实战
Kafka架构全景深度解析与实战本文将系统性介绍Kafka架构及核心角色(Broker、Producer、Consumer、Controller)、核心概念(Topic、Partition、Replica、分区机制),深入剖析主流程源码与设计思想,总结优化与高阶应用,结合实际场景与分布式理论,助你全面掌握Kafka。一、Kafka整体架构概览+-----------------++--------
- Apache Kafka Connect接口存在任意文件读取漏洞与SSRF漏洞CVE-2025-27817
sublime88
漏洞复现apachekafka分布式安全web安全网络sql
@[toc]免责声明:请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失,均由使用者本人负责,所产生的一切不良后果与文章作者无关。该文章仅供学习用途使用。1.ApacheKafka简介微信公众号搜索:南风漏洞复现文库该文章南风漏洞复现文库公众号首发ApacheKafka是一个分布式的流式数据平台,可以用于构建实时的数据管道和流式应用程序
- Kafka Connect 存在任意文件读取漏洞(CVE-2025-27817)
Byp0ss403小号
在野漏洞复现kafka漏洞复现
免责声明本文档所述漏洞详情及复现方法仅限用于合法授权的安全研究和学术教育用途。任何个人或组织不得利用本文内容从事未经许可的渗透测试、网络攻击或其他违法行为。使用者应确保其行为符合相关法律法规,并取得目标系统的明确授权。对于因不当使用本文信息而造成的任何直接或间接后果,作者概不负责。若您发现本文内容涉及侵权或不当信息,请及时联系我们,我们将立即核实并采取必要措施。一:产品介绍ApacheKafka是
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号