【算法题】2845. 统计趣味子数组的数目

题目:

给你一个下标从 0 开始的整数数组 nums ,以及整数 modulo 和整数 k 。

请你找出并统计数组中 趣味子数组 的数目。

如果 子数组 nums[l…r] 满足下述条件,则称其为 趣味子数组 :

在范围 [l, r] 内,设 cnt 为满足 nums[i] % modulo == k 的索引 i 的数量。并且 cnt % modulo == k 。
以整数形式表示并返回趣味子数组的数目。

注意:子数组是数组中的一个连续非空的元素序列。

示例 1:

输入:nums = [3,2,4], modulo = 2, k = 1
输出:3
解释:在这个示例中,趣味子数组分别是:
子数组 nums[0…0] ,也就是 [3] 。

  • 在范围 [0, 0] 内,只存在 1 个下标 i = 0 满足 nums[i] % modulo == k 。
  • 因此 cnt = 1 ,且 cnt % modulo == k 。
    子数组 nums[0…1] ,也就是 [3,2] 。
  • 在范围 [0, 1] 内,只存在 1 个下标 i = 0 满足 nums[i] % modulo == k 。
  • 因此 cnt = 1 ,且 cnt % modulo == k 。
    子数组 nums[0…2] ,也就是 [3,2,4] 。
  • 在范围 [0, 2] 内,只存在 1 个下标 i = 0 满足 nums[i] % modulo == k 。
  • 因此 cnt = 1 ,且 cnt % modulo == k 。
    可以证明不存在其他趣味子数组。因此,答案为 3 。
    示例 2:

输入:nums = [3,1,9,6], modulo = 3, k = 0
输出:2
解释:在这个示例中,趣味子数组分别是:
子数组 nums[0…3] ,也就是 [3,1,9,6] 。

  • 在范围 [0, 3] 内,只存在 3 个下标 i = 0, 2, 3 满足 nums[i] % modulo == k 。
  • 因此 cnt = 3 ,且 cnt % modulo == k 。
    子数组 nums[1…1] ,也就是 [1] 。
  • 在范围 [1, 1] 内,不存在下标满足 nums[i] % modulo == k 。
  • 因此 cnt = 0 ,且 cnt % modulo == k 。
    可以证明不存在其他趣味子数组,因此答案为 2 。

提示:

1 <= nums.length <= 10^5
1 <= nums[i] <= 10^9
1 <= modulo <= 10^9
0 <= k < modulo

java代码:

class Solution {

    // 数组版本,效率更高!
    // 因为 s 至多为 n
    public long countInterestingSubarrays(List nums, int mod, int k) {
        int n = nums.size();
        var cnt = new int[n + 1];
        cnt[0] = 1;
        long ans = 0;
        int s = 0;
        for (int x : nums) {
            if (x % mod == k)
                s = (s + 1) % mod;
            int s2 = (s - k + mod) % mod;
            if (s2 <= n)
                ans += cnt[s2];
            cnt[s]++;
        }
        return ans;
    }
}

你可能感兴趣的:(算法,数据结构,leetcode)