熵 | 无线通信知识

文章目录

  • 一、信息论(熵、联合熵、条件熵)
  • 二、Bernoulli熵
  • 三、联合熵和条件熵
  • 四、互信息
  • 五、相对熵(KL距离)
  • 常需要的不等式公式

一、信息论(熵、联合熵、条件熵)

熵定义: H ( X ) = E [ − l o g 2 p ( x ) ] = − ∑ x ∈ X p ( x ) l o g 2 p ( x ) H(X)=E[-log_2p(x)]=-\sum_{x\in X}p(x)log_2p(x) H(X)=E[log2p(x)]=xXp(x)log2p(x)
note

  1. H(X)是X的平均香农信息内容
  2. H(X)是每个符号的平均信息量
  3. 二元问题(抛硬币),H(X)取值为[H(X),H(X)+1]

为什么用 l o g 2 ( . ) log_2(.) log2(.)衡量信息

非负性: f ( p ) ≥ 0 f(p)\ge0 f(p)0, 0 ≤ p ≤ 1 0\le p\le1 0p1
特殊点:当p=0, f ( p ) = ∞ f(p)=\infty f(p)=
可加性
单调递增连续性 ??

二、Bernoulli熵

符号集 χ = [ 0 , 1 ] \chi=[0,1] χ=[0,1],对应的概率 p ⃗ = [ p , 1 − p ] \vec{p}=[p,1-p] p =[p,1p]
Bernoulli熵: H ( X ) = H ( p ) = − p l o g 2 p − ( 1 − p ) l o g 2 ( 1 − p ) H(X)=H(p)=-plog_2p-(1-p)log_2(1-p) H(X)=H(p)=plog2p(1p)log2(1p)
note:

  1. 通常用 H ( p ) H(p) H(p)表示 H ( X ) H(X) H(X)
  2. p=0 or 1时, H ( p ) = 0 H(p)=0 H(p)=0
  3. H ( p ) H(p) H(p)是p的凸函数
  4. p=0.5, H ( p ) H(p) H(p)最大
  5. H ( p ) H(p) H(p)的取值范围 0 ≤ H ( p ) ≤ l o g 2 ∣ χ ∣ 0\le H(p)\le log_2|\chi| 0H(p)log2χ

熵 | 无线通信知识_第1张图片

三、联合熵和条件熵

联合熵:
H ( X , Y ) = − E l o g p ( x , y ) = − ∑ x ∈ X ∑ y ∈ Y p ( x , y ) l o g p ( x , y ) H(X,Y)=-Elogp(x,y)=-\sum_{x\in X} \sum_{y\in Y} p(x,y)logp(x,y) H(X,Y)=Elogp(x,y)=xXyYp(x,y)logp(x,y)
条件熵
H ( Y ∣ X ) = − E l o g ( y ∣ x ) = − ∑ x ∈ X ∑ y ∈ Y p ( x , y ) l o g p ( y ∣ x ) H(Y|X)=-Elog(y|x)=-\sum_{x\in X} \sum_{y\in Y}p(x,y)logp(y|x) H(YX)=Elog(yx)=xXyYp(x,y)logp(yx)
H ( Y ∣ X ) = ∑ x ∈ X p ( x ) H ( Y ∣ X = x ) H(Y|X)=\sum_{x\in X}p(x)H(Y|X=x) H(YX)=xXp(x)H(YX=x)
熵的链式法则

  1. H ( X , Y ) = H ( X ) + H ( Y ∣ X ) H(X,Y)=H(X)+H(Y|X) H(X,Y)=H(X)+H(YX)
  2. H ( X , Y ∣ Z ) = H ( X ∣ Z ) + H ( Y ∣ X , Z ) H(X,Y|Z)=H(X|Z)+H(Y|X,Z) H(X,YZ)=H(XZ)+H(YX,Z)
  3. H ( X 1 , X 2 , . . . . X n ) = ∑ i = 1 n H ( X i ∣ X i − 1 , . . . . X 1 ) H(X_1,X_2,....X_n)=\sum_{i=1}^{n}H(X_i|X_{i-1},....X_1) H(X1,X2,....Xn)=i=1nH(XiXi1,....X1)

四、互信息

定义:
I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) = H ( X ) + H ( Y ) − H ( X , Y ) I(X;Y)=H(X)-H(X|Y)=H(X)+H(Y)-H(X,Y) I(X;Y)=H(X)H(XY)=H(X)+H(Y)H(X,Y)
互信息具有对称性

I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) = H ( Y ) − H ( Y ∣ X ) I(X;Y)=H(X)-H(X|Y)=H(Y)-H(Y|X) I(X;Y)=H(X)H(XY)=H(Y)H(YX)
I ( X ; Y ) = H ( X ) + H ( Y ) − H ( X , Y ) I(X;Y)=H(X)+H(Y)-H(X,Y) I(X;Y)=H(X)+H(Y)H(X,Y)
I ( X ; Y ) = I ( Y , X ) I(X;Y)=I(Y,X) I(X;Y)=I(Y,X)
I ( X ; X ) = H ( X ) I(X;X)=H(X) I(X;X)=H(X)
I ( X ; Y ) ≥ 0 I(X;Y)\ge0 I(X;Y)0,当且仅当X Y互相独立时,等号成立

互信息的链式法则
I ( X 1 , X 2 , . . . . X n ; Y ) = ∑ i = 1 n I ( X i ; Y ∣ X i − 1 , . . . . , X 1 ) I(X_1,X_2,....X_n;Y)=\sum_{i=1}^nI(X_i;Y|X_{i-1},....,X_1) I(X1,X2,....Xn;Y)=i=1nI(Xi;YXi1,....,X1)

五、相对熵(KL距离)

D ( p ⃗ ∣ ∣ q ⃗ ) = ∑ x ∈ X p ( x ) l o g q ( x ) p ( x ) = E p ⃗ [ − l o g q ( x ) ] − H ( p ⃗ ) D(\vec{p}||\vec{q})=\sum_{x\in X}p(x)log\frac{q(x)}{p(x)}=E_{\vec{p}}[-logq(x)]-H(\vec{p}) D(p ∣∣q )=xXp(x)logp(x)q(x)=Ep [logq(x)]H(p )
D ( p ⃗ ∣ ∣ q ⃗ ) D(\vec{p}||\vec{q}) D(p ∣∣q )测量的是两个概率分布 p ⃗ \vec{p} p q ⃗ \vec{q} q 间的距离,并非真实距离
D ( p ⃗ ∣ ∣ q ⃗ ) ≥ 0 D(\vec{p}||\vec{q})\ge 0 D(p ∣∣q )0,当且仅当 p ⃗ \vec{p} p = q ⃗ \vec{q} q ,等号成立

常需要的不等式公式

H ( Y ∣ X ) ≤ H ( X ) H(Y|X)\le H(X) H(YX)H(X),X和Y互相独立时,等号成立
H ( X 1 , X 2 , . . . . X n ) ≤ ∑ i = 1 n H ( X i ) H(X_1,X_2,....X_n)\le \sum_{i=1}^nH(X_i) H(X1,X2,....Xn)i=1nH(Xi),当且仅当 X i X_i Xi互相独立时等号成立

参考文章:通信算法基础知识汇总(5)

你可能感兴趣的:(无线通信,信息与通信)