熵定义: H ( X ) = E [ − l o g 2 p ( x ) ] = − ∑ x ∈ X p ( x ) l o g 2 p ( x ) H(X)=E[-log_2p(x)]=-\sum_{x\in X}p(x)log_2p(x) H(X)=E[−log2p(x)]=−x∈X∑p(x)log2p(x)
note
为什么用 l o g 2 ( . ) log_2(.) log2(.)衡量信息
非负性: f ( p ) ≥ 0 f(p)\ge0 f(p)≥0, 0 ≤ p ≤ 1 0\le p\le1 0≤p≤1
特殊点:当p=0, f ( p ) = ∞ f(p)=\infty f(p)=∞
可加性
单调递增连续性 ??
符号集 χ = [ 0 , 1 ] \chi=[0,1] χ=[0,1],对应的概率 p ⃗ = [ p , 1 − p ] \vec{p}=[p,1-p] p=[p,1−p]
Bernoulli熵: H ( X ) = H ( p ) = − p l o g 2 p − ( 1 − p ) l o g 2 ( 1 − p ) H(X)=H(p)=-plog_2p-(1-p)log_2(1-p) H(X)=H(p)=−plog2p−(1−p)log2(1−p)
note:
联合熵:
H ( X , Y ) = − E l o g p ( x , y ) = − ∑ x ∈ X ∑ y ∈ Y p ( x , y ) l o g p ( x , y ) H(X,Y)=-Elogp(x,y)=-\sum_{x\in X} \sum_{y\in Y} p(x,y)logp(x,y) H(X,Y)=−Elogp(x,y)=−x∈X∑y∈Y∑p(x,y)logp(x,y)
条件熵
H ( Y ∣ X ) = − E l o g ( y ∣ x ) = − ∑ x ∈ X ∑ y ∈ Y p ( x , y ) l o g p ( y ∣ x ) H(Y|X)=-Elog(y|x)=-\sum_{x\in X} \sum_{y\in Y}p(x,y)logp(y|x) H(Y∣X)=−Elog(y∣x)=−x∈X∑y∈Y∑p(x,y)logp(y∣x)
H ( Y ∣ X ) = ∑ x ∈ X p ( x ) H ( Y ∣ X = x ) H(Y|X)=\sum_{x\in X}p(x)H(Y|X=x) H(Y∣X)=x∈X∑p(x)H(Y∣X=x)
熵的链式法则
定义:
I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) = H ( X ) + H ( Y ) − H ( X , Y ) I(X;Y)=H(X)-H(X|Y)=H(X)+H(Y)-H(X,Y) I(X;Y)=H(X)−H(X∣Y)=H(X)+H(Y)−H(X,Y)
互信息具有对称性
I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) = H ( Y ) − H ( Y ∣ X ) I(X;Y)=H(X)-H(X|Y)=H(Y)-H(Y|X) I(X;Y)=H(X)−H(X∣Y)=H(Y)−H(Y∣X)
I ( X ; Y ) = H ( X ) + H ( Y ) − H ( X , Y ) I(X;Y)=H(X)+H(Y)-H(X,Y) I(X;Y)=H(X)+H(Y)−H(X,Y)
I ( X ; Y ) = I ( Y , X ) I(X;Y)=I(Y,X) I(X;Y)=I(Y,X)
I ( X ; X ) = H ( X ) I(X;X)=H(X) I(X;X)=H(X)
I ( X ; Y ) ≥ 0 I(X;Y)\ge0 I(X;Y)≥0,当且仅当X Y互相独立时,等号成立
互信息的链式法则
I ( X 1 , X 2 , . . . . X n ; Y ) = ∑ i = 1 n I ( X i ; Y ∣ X i − 1 , . . . . , X 1 ) I(X_1,X_2,....X_n;Y)=\sum_{i=1}^nI(X_i;Y|X_{i-1},....,X_1) I(X1,X2,....Xn;Y)=i=1∑nI(Xi;Y∣Xi−1,....,X1)
D ( p ⃗ ∣ ∣ q ⃗ ) = ∑ x ∈ X p ( x ) l o g q ( x ) p ( x ) = E p ⃗ [ − l o g q ( x ) ] − H ( p ⃗ ) D(\vec{p}||\vec{q})=\sum_{x\in X}p(x)log\frac{q(x)}{p(x)}=E_{\vec{p}}[-logq(x)]-H(\vec{p}) D(p∣∣q)=x∈X∑p(x)logp(x)q(x)=Ep[−logq(x)]−H(p)
D ( p ⃗ ∣ ∣ q ⃗ ) D(\vec{p}||\vec{q}) D(p∣∣q)测量的是两个概率分布 p ⃗ \vec{p} p和 q ⃗ \vec{q} q间的距离,并非真实距离
D ( p ⃗ ∣ ∣ q ⃗ ) ≥ 0 D(\vec{p}||\vec{q})\ge 0 D(p∣∣q)≥0,当且仅当 p ⃗ \vec{p} p= q ⃗ \vec{q} q,等号成立
H ( Y ∣ X ) ≤ H ( X ) H(Y|X)\le H(X) H(Y∣X)≤H(X),X和Y互相独立时,等号成立
H ( X 1 , X 2 , . . . . X n ) ≤ ∑ i = 1 n H ( X i ) H(X_1,X_2,....X_n)\le \sum_{i=1}^nH(X_i) H(X1,X2,....Xn)≤∑i=1nH(Xi),当且仅当 X i X_i Xi互相独立时等号成立
参考文章:通信算法基础知识汇总(5)