8月AI实战:工业视觉缺陷检测 --基于tflite的yolov8模型优化和推理

8月AI实战:工业视觉缺陷检测

--基于tflite的yolov8模型优化和推理

操作视频见B站连接:aidlux模型优化+工业缺陷检测~~完美用我的华为手机实现缺陷检测的推理bilibiliaidlux模型优化+工业缺陷检测~~完美用我的华为手机实现缺陷检测的推理

1 模型优化

将onnx模型转化为tflite模型

打开网站:http://aimo.aidlux.com/
输入试用账号和密码:账号:AIMOTC001 ,密码:AIMOTC001

通过页面中的提示AI Model Optimizer,依次执行步骤①上传模型②选择目标平台③参数设置④转换结果。

通过上述①-④可将onnx模型转为tflite模型

模型转换过程包含如下日志信息

2023-09-07 19:47:05,969 - INFO : Optimization started.
2023-09-07 19:47:05,970 - INFO : [ONNX-SIM] Clean ONNX Model input node.
2023-09-07 19:47:06,733 - INFO : [ONNX2TFLITE] Start converting to TFLITE.
2023-09-07 19:47:28,511 - INFO : Model optimization done.

2 推理的py文件

模型采用课程中提供的yolov8_slimneck_SIOU.ONNX,转化完模型路径及名称,如下

# 模型
model_path = "/home/lesson3/yolov8_slimneck_SIOU_tflite/yolov8_slimneck_SIOU_fp32.tflite"
# 测试图片路径
image_path = "/home/lesson3/test"

模型推理过程包含如下步骤:

  1. 初始化aidlite类并创建aidlite对象
aidlite = aidlite_gpu.aidlite()
print("ok")
  1. 加载模型
value = aidlite.ANNModel(model_path, [640 * 640 * 3 * 4], [8400 * 11 * 4], 4, 0)
print("gpu:", value)

包含遍历每一张图片

for root, dirs, files in os.walk(image_path):
    num = 0
    for file in files:
        file = os.path.join(root, file)
         frame = cv2.imread(file)
         x_scale = frame.shape[1] / 640
         y_scale = frame.shape[0] / 640

将图片转换为模型输入的640*640尺寸

img = cv2.resize(frame, (640, 640))
# img_copy=img.co
img = img / 255.0
img = np.expand_dims(img, axis=0)
img = img.astype(dtype=np.float32)
print(img.shape)
  1. 传入模型输入数据
aidlite.setInput_Float32(img)
  1. 执行推理
start = time.time()
aidlite.invoke()
end = time.time()
timerValue = 1000 * (end - start)
print("infer time(ms):{0}", timerValue)
  1. 获取输出
pred = aidlite.getOutput_Float32(0)
# print(pred.shape)
pred = np.array(pred)
print(pred.shape)
pred = np.reshape(pred, (8400, 11))
print(pred.shape)  # shape=(8400,11)
  1. 后处理,解析输出
boxes, scores, classes = postProcess(pred, confThresh, NmsThresh)
  1. 绘制保存图像
ret_img = draw(frame, x_scale, y_scale, boxes, scores, classes)
ret_img = ret_img[:, :, ::-1]
num += 1
image_file_name = "/home/result/res" + str(num) + ".jpg"

​ 8. 保存图片

cv2.imwrite(image_file_name, ret_img)

你可能感兴趣的:(人工智能)