Python线程(thread)

threading线程模块

在Python3中,通过threading模块提供线程的功能。原来的thread模块已废弃。但是threading模块中有个Thread类(大写的T,类名),是模块中最主要的线程类,一定要分清楚了,千万不要搞混了。

threading模块提供了一些比较实用的方法或者属性,例如:

方法与属性 描述
current_thread() 返回当前线程
active_count() 返回当前活跃的线程数,1个主线程+n个子线程
get_ident() 返回当前线程
enumerate() 返回当前活动 Thread 对象列表
main_thread() 返回主 Thread 对象
settrace(func) 为所有线程设置一个 trace 函数
setprofile(func) 为所有线程设置一个 profile 函数
stack_size([size]) 返回新创建线程栈大小;或为后续创建的线程设定栈大小为 size
TIMEOUT_MAX Lock.acquire(), RLock.acquire(), Condition.wait() 允许的最大超时时间

threading模块包含下面的类:

  • Thread:基本线程类
  • Lock:互斥锁
  • RLock:可重入锁,使单一进程再次获得已持有的锁(递归锁)
  • Condition:条件锁,使得一个线程等待另一个线程满足特定条件,比如改变状态或某个值。
  • Semaphore:信号锁。为线程间共享的有限资源提供一个”计数器”,如果没有可用资源则会被阻塞。
  • Event:事件锁,任意数量的线程等待某个事件的发生,在该事件发生后所有线程被激活
  • Timer:一种计时器
  • Barrier:Python3.2新增的“阻碍”类,必须达到指定数量的线程后才可以继续执行。

创建线程

有两种方式来创建线程:一种是继承Thread类,并重写它的run()方法;另一种是在实例化threading.Thread对象的时候,将线程要执行的任务函数作为参数传入线程。

Thread子类

import threading
import time
import random

class MyThread(threading.Thread):
    def __init__(self, thread_name):
        # 注意:一定要显式的调用父类的初始化函数。
        super(MyThread, self).__init__(name=thread_name)

    def run(self):
        print(f"{self.name} run......")
        time.sleep(random.randint(0,3))
        print(f"{self.name} Over!")


for i in range(3):
    MyThread("thread-" + str(i)).start()

直接注入任务函数

import threading
import time

def show(arg):
    time.sleep(1)
    print('thread '+str(arg)+" running....")

if __name__ == '__main__':
    for i in range(10):
        t = threading.Thread(target=show, args=(i,))
        t.start()

Thread类

它的定义如下:

threading.Thread(self, group=None, target=None, name=None,
     args=(), kwargs=None, *, daemon=None)
  • 参数group是预留的,用于将来扩展;
  • 参数target是一个可调用对象,在线程启动后执行;
  • 参数name是线程的名字。默认值为“Thread-N“,N是一个数字。
  • 参数args和kwargs分别表示调用target时的参数列表和关键字参数。

Thread类定义了以下常用方法与属性:

方法与属性 说明
start()

启动线程,等待CPU调度。

它在一个线程里最多只能被调用一次。 它安排对象的 run() 方法在一个独立的控制线程中被调用。

如果同一个线程对象中调用这个方法的次数大于一次,会抛出 RuntimeError 。

run()

线程被cpu调度后自动执行的方法

代表线程活动的方法。

你可以在子类型里重载这个方法。 标准的 run() 方法会对作为 target 参数传递给该对象构造器的可调用对象(如果存在)发起调用,并附带从 args 和 kwargs 参数分别获取的位置和关键字参数。

使用列表或元组作为传给 Thread 的 args 参数可以达成同样的效果。

name 只用于识别的字符串。它没有语义。多个线程可以赋予相同的名称。 初始名称由构造函数设置。
getName()、setName()和name 用于获取和设置线程的名称。3.10 版后已移除.

setDaemon()

设置为后台线程或前台线程(默认是False,前台线程)。如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止。如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程执行完成后,程序才停止。3.10 版后已移除.
isDaemon() 是否为守护线程,3.10 版后已移除.
daemon

一个布尔值,表示这个线程是否是一个守护线程(True)或不是(False)。 这个值必须在调用 start() 之前设置,否则会引发 RuntimeError 。它的初始值继承自创建线程;主线程不是一个守护线程,因此所有在主线程中创建的线程默认为 daemon = False。

当没有存活的非守护线程时,整个Python程序才会退出。

ident 获取线程的标识符。线程标识符是一个非零整数,只有在调用了start()方法之后该属性才有效,否则它只返回None。
native_id 此线程的线程 ID (TID),由 OS (内核) 分配。 这是一个非负整数,或者如果线程还未启动则为 None。 请参阅 get_native_id() 函数。 这个值可被用来在全系统范围内唯一地标识这个特定线程 (直到线程终结,在那之后该值可能会被 OS 回收再利用)。
is_alive() 判断线程是否是激活的(alive)。从调用start()方法启动线程,到run()方法执行完毕或遇到未处理异常而中断这段时间内,线程是激活的。
join([timeout])

调用该方法将会使主调线程堵塞,直到被调用线程运行结束或超时。参数timeout是一个数值类型,表示超时时间,如果未提供该参数,那么主调线程将一直堵塞到被调线程结束。

这会阻塞调用这个方法的线程,直到被调用 join() 的线程终结 -- 不管是正常终结还是抛出未处理异常 -- 或者直到发生超时,超时选项是可选的。

当 timeout 参数存在而且不是 None 时,它应该是一个用于指定操作超时的以秒为单位的浮点数或者分数。因为 join() 总是返回 None ,所以你一定要在 join() 后调用 is_alive() 才能判断是否发生超时 -- 如果线程仍然存活,则 join() 超时。

当 timeout 参数不存在或者是 None ,这个操作会阻塞直到线程终结。

一个线程可以被合并多次。

如果尝试加入当前线程会导致死锁, join() 会引起 RuntimeError 异常。如果尝试 join() 一个尚未开始的线程,也会抛出相同的异常。

在多线程执行过程中,有一个特点要注意,那就是每个线程各执行各的任务,不等待其它的线程,自顾自的完成自己的任务,比如下面的例子:

import time
import threading

def doWaiting():
    print('start waiting:', time.strftime('%H:%M:%S'))
    time.sleep(3)
    print('stop waiting', time.strftime('%H:%M:%S'))

t = threading.Thread(target=doWaiting)
t.start()
# 确保线程t已经启动
time.sleep(1)
print('start job')
print('end job’)

‘’'
start waiting: 10:50:35
start job
end job
stop waiting 10:50:38
‘''

Python默认会等待最后一个线程执行完毕后才退出。上面例子中,主线程没有等待子线程t执行完毕,而是啥都不管,继续往下执行它自己的代码,执行完毕后也没有结束整个程序,而是等待子线程t执行完毕,整个程序才结束。

有时候我们希望主线程等等子线程,不要“埋头往前跑”。那要怎么办?使用join()方法!如下所示:

import time
import threading

def doWaiting():
    print('start waiting:', time.strftime('%H:%M:%S'))
    time.sleep(3)
    print('stop waiting', time.strftime('%H:%M:%S'))

t = threading.Thread(target=doWaiting)
t.start()
# 确保线程t已经启动
time.sleep(1)
print('start join')
# 将一直堵塞,直到t运行结束。
t.join()
print('end join’)

‘’'
start waiting: 10:54:03
start join
stop waiting 10:54:06
end join
‘''

我们还可以使用setDaemon(True)把所有的子线程都变成主线程的守护线程,当主线程结束后,守护子线程也会随之结束,整个程序也跟着退出。

import threading
import time
import random

class MyThread(threading.Thread):
    def __init__(self, thread_name):
        # 注意:一定要显式的调用父类的初始化函数。
        super(MyThread, self).__init__(name=thread_name)
        self.daemon = True

    def run(self):
        print(f"{self.name} run......")
        time.sleep(2)
        print(f"{self.name} Over!")


for i in range(3):
    MyThread("thread-" + str(i)).start()

time.sleep(1)
print("Game Over!”)

‘’'
thread-0 run......
thread-1 run......
thread-2 run......
Game Over!
‘''

线程锁

由于线程之间的任务执行是CPU进行随机调度的,并且每个线程可能只执行了n条指令之后就被切换到别的线程了。当多个线程同时操作一个对象,如果没有很好地保护该对象,会造成程序结果的不可预期,这被称为“线程不安全”。为了保证数据安全,我们设计了线程锁,即同一时刻只允许一个线程操作该数据。线程锁用于锁定资源,可以同时使用多个锁,当你需要独占某一资源时,任何一个锁都可以锁这个资源,就好比你用不同的锁都可以把相同的一个箱子锁住是一个道理。

我们先看一下没有锁的情况下,脏数据是如何产生的。

import threading
import time
import random

number = 0

def plus():
    global number       # global声明此处的number是外面的全局变量number
    time.sleep(random.random())
    for _ in range(100):    # 进行一个大数级别的循环加一运算
        number = number + 1
        time.sleep(random.random())

    print(f"子线程{threading.current_thread().name}运算结束后,{number=}")

threadp = [0,1,2]
for i in range(3):      # 用2个子线程,就可以观察到脏数据
    threadp[i] = threading.Thread(target=plus)
    threadp[i].start()

time.sleep(3)
for i in range(3):
    threadp[i].join()

print("主线程执行完毕后,number = ", number)

结果不等于300,可以很明显地看出脏数据的情况。这是因为两个线程在运行过程中,CPU随机调度,你算一会我算一会,在没有对number进行保护的情况下,就发生了数据错误。

如果你的结果等于300,可能也是正确的,因为事实上Python并不能多线程允许,这个例子只是演示这种场景在真的多线程环境下,会出现不同的结果。

上面为了防止脏数据而使用join()的方法,其实是让多线程变成了单线程,属于因噎废食的做法,正确的做法是使用线程锁。Python在threading模块中定义了几种线程锁类,分别是:

  • Lock 互斥锁
  • RLock 可重入锁
  • Semaphore 信号
  • Event 事件
  • Condition 条件
  • Barrier “阻碍”

互斥锁Lock

互斥锁是一种独占锁,同一时刻只有一个线程可以访问共享的数据。使用很简单,初始化锁对象,然后将锁当做参数传递给任务函数,在任务中加锁,使用后释放锁。

import threading
import time

number = 0
lk = threading.Lock()

def plus(lk):
    global number       # global声明此处的number是外面的全局变量number
    lk.acquire()        # 开始加锁
    for _ in range(1000000):    # 进行一个大数级别的循环加一运算
        number += 1
    print("子线程%s运算结束后,number = %s" % (threading.current_thread().getName(), number))
    lk.release()        # 释放锁,让别的线程也可以访问number

if __name__ == '__main__':
    for i in range(2):      # 用2个子线程,就可以观察到脏数据
        t = threading.Thread(target=plus, args=(lock,)) # 需要把锁当做参数传递给plus函数
        t.start()
    time.sleep(2)       # 等待2秒,确保2个子线程都已经结束运算。
    print("主线程执行完毕后,number = ", number)

RLock的使用方法和Lock一模一样,只不过它支持重入锁。该锁对象内部维护着一个Lock和一个counter对象。counter对象记录了acquire的次数,使得资源可以被多次require。最后,当所有RLock被release后,其他线程才能获取资源。在同一个线程中,RLock.acquire()可以被多次调用,利用该特性,可以解决部分死锁问题。

信号Semaphore

类名:BoundedSemaphore。这种锁允许一定数量的线程同时更改数据,它不是互斥锁。比如地铁安检,排队人很多,工作人员只允许一定数量的人进入安检区,其它的人继续排队。

import time
import threading

def run(n, se):
    se.acquire()
    print("run the thread: %s" % n)
    time.sleep(1)
    se.release()

# 设置允许5个线程同时运行
semaphore = threading.BoundedSemaphore(5)
for i in range(20):
    t = threading.Thread(target=run, args=(i,semaphore))
    t.start()

运行后,可以看到5个一批的线程被放行。

事件Event

事件线程锁的运行机制:全局定义了一个Flag,如果Flag的值为False,那么当程序执行wait()方法时就会阻塞,如果Flag值为True,线程不再阻塞。这种锁,类似交通红绿灯(默认是红灯),它属于在红灯的时候一次性阻挡所有线程,在绿灯的时候,一次性放行所有排队中的线程。

事件主要提供了四个方法set()、wait()、clear()和is_set()。

调用clear()方法会将事件的Flag设置为False。

调用set()方法会将Flag设置为True。

调用wait()方法将等待“红绿灯”信号。

is_set():判断当前是否"绿灯放行"状态

下面是一个模拟红绿灯,然后汽车通行的例子:

#利用Event类模拟红绿灯
import threading
import time

event = threading.Event()

def lighter():
    green_time = 5       # 绿灯时间
    red_time = 5         # 红灯时间
    event.set()          # 初始设为绿灯
    while True:
        print("\33[32;0m 绿灯亮...\033[0m")
        time.sleep(green_time)
        event.clear()
        print("\33[31;0m 红灯亮...\033[0m")
        time.sleep(red_time)
        event.set()

def run(name):
    while True:
        if event.is_set():      # 判断当前是否"放行"状态
            print("一辆[%s] 呼啸开过..." % name)
            time.sleep(1)
        else:
            print("一辆[%s]开来,看到红灯,无奈的停下了..." % name)
            event.wait()
            print("[%s] 看到绿灯亮了,瞬间飞起....." % name)

if __name__ == '__main__':

    light = threading.Thread(target=lighter,)
    light.start()

    for name in ['奔驰', '宝马', '奥迪']:
        car = threading.Thread(target=run, args=(name,))
        car.start()

条件Condition

Condition称作条件锁,依然是通过acquire()/release()加锁解锁。

wait([timeout])方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。

notify()方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池),其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

notifyAll()方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

下面的例子,有助于你理解Condition的使用方法:

import threading
import time

num = 0
con = threading.Condition()

class Foo(threading.Thread):

    def __init__(self, name, action):
        super(Foo, self).__init__()
        self.name = name
        self.action = action

    def run(self):
        global num
        con.acquire()
        print("%s开始执行..." % self.name)
        while True:
            if self.action == "add":
                num += 1
            elif self.action == 'reduce':
                num -= 1
            else:
                exit(1)
            print("num当前为:", num)
            time.sleep(1)
            if num == 5 or num == 0:
                print("暂停执行%s!" % self.name)
                con.notify()
                con.wait()
                print("%s开始执行..." % self.name)
        con.release()

if __name__ == '__main__':
    a = Foo("线程A", 'add')
    b = Foo("线程B", 'reduce')
    a.start()
    b.start()

定时器Timer

定时器Timer类是threading模块中的一个小工具,用于指定n秒后执行某操作。一个简单但很实用的东西。

from threading import Timer

def hello():
    print("hello, world")

# 表示1秒后执行hello函数
t = Timer(1, hello)
t.start()

通过with语句使用线程锁

所有的线程锁都有一个加锁和释放锁的动作,非常类似文件的打开和关闭。在加锁后,如果线程执行过程中出现异常或者错误,没有正常的释放锁,那么其他的线程会造到致命性的影响。通过with上下文管理器,可以确保锁被正常释放。其格式如下:

with some_lock:
    # 执行任务...

这相当于:

some_lock.acquire()
try:
    # 执行任务..
finally:
    some_lock.release()

全局解释器锁(GIL)

既然介绍了多线程和线程锁,那就不得不提及Python的GIL问题。

在大多数环境中,单核CPU情况下,本质上某一时刻只能有一个线程被执行,多核CPU时则 可以支持多个线程同时执行。但是在Python中,无论CPU有多少核,同时只能执行一个线程。这是由于GIL的存在导致的。

GIL的全称是Global Interpreter Lock(全局解释器锁),是Python设计之初为了数据安全所做的决定。Python中的某个线程想要执行,必须先拿到GIL。可以把GIL看作是执行任务的“通行证”,并且在一个Python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。GIL只在CPython解释器中才有,因为CPython调用的是c语言的原生线程,不能直接操作cpu,只能利用GIL保证同一时间只能有一个线程拿到数据。在PyPy和JPython中没有GIL。

Python多线程的工作流程:

  1. 拿到公共数据
  2. 申请GIL
  3. Python解释器调用操作系统原生线程
  4. cpu执行运算
  5. 当该线程执行一段时间消耗完,无论任务是否已经执行完毕,都会释放GIL
  6. 下一个被CPU调度的线程重复上面的过程

Python针对不同类型的任务,多线程执行效率是不同的:

对于CPU密集型任务(各种循环处理、计算等等),由于计算工作多,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换是需要消耗资源的),所以Python下的多线程对CPU密集型任务并不友好。

IO密集型任务(文件处理、网络通信等涉及数据读写的操作),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。所以Python的多线程对IO密集型任务比较友好。

为什么不能去掉GIL?

首先,在早期的Python解释器依赖较多的全局状态,传承下来,使得想要移除当今的GIL变得更加困难。其次,对于程序员而言,仅仅是理解GIL的实现就需要对操作系统设计、多线程编程、C语言、解释器设计和CPython解释器的实现有着非常彻底的理解,更不用说对它进行修改删除了。总之,整体技术难度大,会对当前内部框架产生根本性的影响,牵一发而动全身。

在1999年,针对Python1.5,一个叫做“freethreading”的补丁已经尝试移除GIL,用细粒度的锁来代替。然而,GIL的移除给单线程程序的执行速度带来了一定的负面影响。当用单线程执行时,速度大约降低了40%。虽然使用两个线程时在速度上得到了提高,但这个提高并没有随着核数的增加而线性增长。因此这个补丁没有被采纳。

虽然,在Python的不同解释器实现中,如PyPy就移除了GIL,其执行速度更快(不单单是去除GIL的原因)。但是,我们通常使用的CPython解释器版本占有着统治地位的使用量,所以,你懂的。

在实际使用中的建议:

Python中想要充分利用多核CPU,就用多进程。因为每个进程有各自独立的GIL,互不干扰,这样就可以真正意义上的并行执行。在Python中,多进程的执行效率优于多线程(仅仅针对多核CPU而言)。同时建议在IO密集型任务中使用多线程,在计算密集型任务中使用多进程。另外,深入研究Python的协程机制,你会有惊喜的。

你可能感兴趣的:(python,开发语言)